ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.03470
  4. Cited By
For Learning in Symmetric Teams, Local Optima are Global Nash Equilibria

For Learning in Symmetric Teams, Local Optima are Global Nash Equilibria

7 July 2022
Scott Emmons
Caspar Oesterheld
Andrew Critch
Vincent Conitzer
Stuart J. Russell
ArXivPDFHTML

Papers citing "For Learning in Symmetric Teams, Local Optima are Global Nash Equilibria"

2 / 2 papers shown
Title
Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Efficiently Computing Nash Equilibria in Adversarial Team Markov Games
Fivos Kalogiannis
Ioannis Anagnostides
Ioannis Panageas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Vaggos Chatziafratis
S. Stavroulakis
49
13
0
03 Aug 2022
"Other-Play" for Zero-Shot Coordination
"Other-Play" for Zero-Shot Coordination
Hengyuan Hu
Adam Lerer
A. Peysakhovich
Jakob N. Foerster
VLM
OffRL
136
218
0
06 Mar 2020
1