Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.03133
Cited By
Improving Few-Shot Image Classification Using Machine- and User-Generated Natural Language Descriptions
7 July 2022
Kosuke Nishida
Kyosuke Nishida
Shuichi Nishioka
VLM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Few-Shot Image Classification Using Machine- and User-Generated Natural Language Descriptions"
8 / 8 papers shown
Title
Model-agnostic Coreset Selection via LLM-based Concept Bottlenecks
Akshay Mehra
Trisha Mittal
Subhadra Gopalakrishnan
Joshua Kimball
45
0
0
23 Feb 2025
Explanation Bottleneck Models
Shinýa Yamaguchi
Kosuke Nishida
LRM
BDL
51
1
0
26 Sep 2024
GazeXplain: Learning to Predict Natural Language Explanations of Visual Scanpaths
Xianyu Chen
Ming Jiang
Qi Zhao
24
2
0
05 Aug 2024
Reading Is Believing: Revisiting Language Bottleneck Models for Image Classification
Honori Udo
Takafumi Koshinaka
VLM
43
0
0
22 Jun 2024
LLM-based Hierarchical Concept Decomposition for Interpretable Fine-Grained Image Classification
Renyi Qu
Mark Yatskar
26
1
0
29 May 2024
Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification
Yue Yang
Artemis Panagopoulou
Shenghao Zhou
Daniel Jin
Chris Callison-Burch
Mark Yatskar
40
213
0
21 Nov 2022
What you can cram into a single vector: Probing sentence embeddings for linguistic properties
Alexis Conneau
Germán Kruszewski
Guillaume Lample
Loïc Barrault
Marco Baroni
201
882
0
03 May 2018
Learning Deep Representations of Fine-grained Visual Descriptions
Scott E. Reed
Zeynep Akata
Bernt Schiele
Honglak Lee
OCL
VLM
170
840
0
17 May 2016
1