Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.02862
Cited By
Verifying the Union of Manifolds Hypothesis for Image Data
6 July 2022
Bradley Brown
Anthony L. Caterini
Brendan Leigh Ross
Jesse C. Cresswell
G. Loaiza-Ganem
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Verifying the Union of Manifolds Hypothesis for Image Data"
36 / 36 papers shown
Title
Cutting Through Privacy: A Hyperplane-Based Data Reconstruction Attack in Federated Learning
Francesco Diana
André Nusser
Chuan Xu
Giovanni Neglia
27
0
0
15 May 2025
Optimal Stochastic Trace Estimation in Generative Modeling
Xinyang Liu
Hengrong Du
Wei Deng
Ruqi Zhang
AI4TS
52
0
0
26 Feb 2025
Approximating Latent Manifolds in Neural Networks via Vanishing Ideals
Nico Pelleriti
Max Zimmer
Elias Wirth
Sebastian Pokutta
44
0
0
24 Feb 2025
Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions
Soren Christensen
C. Strauch
Lukas Trottner
DiffM
103
0
0
31 Jan 2025
Towards Scalable Topological Regularizers
Hiu-Tung Wong
Darrick Lee
Hong Yan
BDL
59
0
0
24 Jan 2025
Understanding How Nonlinear Layers Create Linearly Separable Features for Low-Dimensional Data
Alec S. Xu
Can Yaras
Peng Wang
Q. Qu
30
0
0
04 Jan 2025
A Geometric Framework for Understanding Memorization in Generative Models
Brendan Leigh Ross
Hamidreza Kamkari
Tongzi Wu
Rasa Hosseinzadeh
Zhaoyan Liu
George Stein
Jesse C. Cresswell
G. Loaiza-Ganem
61
6
0
31 Oct 2024
Efficient Distribution Matching of Representations via Noise-Injected Deep InfoMax
I. Butakov
Alexander Sememenko
Alexander Tolmachev
Andrey Gladkov
Marina Munkhoeva
Alexey Frolov
37
0
0
09 Oct 2024
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Hong Ye Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
57
0
0
13 Aug 2024
Local Topology Measures of Contextual Language Model Latent Spaces With Applications to Dialogue Term Extraction
Benjamin Matthias Ruppik
Michael Heck
Carel van Niekerk
Renato Vukovic
Hsien-chin Lin
Shutong Feng
Marcus Zibrowius
Milica Gašić
45
2
0
07 Aug 2024
Accuracy on the wrong line: On the pitfalls of noisy data for out-of-distribution generalisation
Amartya Sanyal
Yaxi Hu
Yaodong Yu
Yian Ma
Yixin Wang
Bernhard Schölkopf
OODD
48
1
0
27 Jun 2024
A Wiener process perspective on local intrinsic dimension estimation methods
Piotr Tempczyk
Łukasz Garncarek
Dominik Filipiak
Adam Kurpisz
44
1
0
24 Jun 2024
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models
Hamidreza Kamkari
Brendan Leigh Ross
Rasa Hosseinzadeh
Jesse C. Cresswell
G. Loaiza-Ganem
DiffM
40
11
0
05 Jun 2024
Guiding a Diffusion Model with a Bad Version of Itself
Tero Karras
M. Aittala
Tuomas Kynkaanniemi
J. Lehtinen
Timo Aila
S. Laine
28
58
0
04 Jun 2024
Hardness of Learning Neural Networks under the Manifold Hypothesis
B. Kiani
Jason Wang
Melanie Weber
45
3
0
03 Jun 2024
A theory of stratification learning
Eddie Aamari
Clément Berenfeld
37
0
0
30 May 2024
Training-free Editioning of Text-to-Image Models
Jinqi Wang
Yunfei Fu
Zhangcan Ding
Bailin Deng
Yu-Kun Lai
Yipeng Qin
DiffM
VLM
42
0
0
27 May 2024
Global Well-posedness and Convergence Analysis of Score-based Generative Models via Sharp Lipschitz Estimates
Connor Mooney
Zhongjian Wang
Jack Xin
Yifeng Yu
45
2
0
25 May 2024
Deep Regression Representation Learning with Topology
Shihao Zhang
Kenji Kawaguchi
Angela Yao
30
1
0
22 Apr 2024
A Geometric Explanation of the Likelihood OOD Detection Paradox
Hamidreza Kamkari
Brendan Leigh Ross
Jesse C. Cresswell
Anthony L. Caterini
Rahul G. Krishnan
G. Loaiza-Ganem
OODD
34
9
0
27 Mar 2024
Data-induced multiscale losses and efficient multirate gradient descent schemes
Juncai He
Liangchen Liu
Yen-Hsi Tsai
27
0
0
05 Feb 2024
Mapping the Multiverse of Latent Representations
Jeremy Wayland
Corinna Coupette
Bastian Alexander Rieck
56
7
0
02 Feb 2024
Plug-and-Play image restoration with Stochastic deNOising REgularization
Marien Renaud
Jean Prost
Arthur Leclaire
Nicolas Papadakis
DiffM
52
7
0
01 Feb 2024
The Effect of Intrinsic Dataset Properties on Generalization: Unraveling Learning Differences Between Natural and Medical Images
N. Konz
Maciej Mazurowski
25
5
0
16 Jan 2024
Deep Generative Models for Detector Signature Simulation: A Taxonomic Review
Baran Hashemi
Claudius Krause
30
16
0
15 Dec 2023
Latent SDEs on Homogeneous Spaces
Sebastian Zeng
Florian Graf
Roland Kwitt
BDL
35
7
0
28 Jun 2023
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
DiffM
28
3
0
30 May 2023
Unpaired Downscaling of Fluid Flows with Diffusion Bridges
Tobias Bischoff
Katherine Deck
29
14
0
02 May 2023
Topological Singularity Detection at Multiple Scales
Julius von Rohrscheidt
Bastian Alexander Rieck
48
9
0
30 Sep 2022
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Brendan Leigh Ross
G. Loaiza-Ganem
Anthony L. Caterini
Jesse C. Cresswell
AI4CE
33
2
0
22 Jun 2022
Conditional Injective Flows for Bayesian Imaging
AmirEhsan Khorashadizadeh
K. Kothari
Leonardo Salsi
Ali Aghababaei Harandi
Maarten V. de Hoop
Ivan Dokmanić
MedIm
26
16
0
15 Apr 2022
Riemannian Score-Based Generative Modelling
Valentin De Bortoli
Emile Mathieu
M. Hutchinson
James Thornton
Yee Whye Teh
Arnaud Doucet
DiffM
222
165
0
06 Feb 2022
Tangent Space and Dimension Estimation with the Wasserstein Distance
Uzu Lim
Harald Oberhauser
Vidit Nanda
44
8
0
12 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
176
1,111
0
27 Apr 2021
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
197
261
0
18 Apr 2021
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,217
0
01 Sep 2014
1