Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.02852
Cited By
Machine Learning Model Sizes and the Parameter Gap
5 July 2022
Pablo Villalobos
J. Sevilla
T. Besiroglu
Lennart Heim
A. Ho
Marius Hobbhahn
ALM
ELM
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Machine Learning Model Sizes and the Parameter Gap"
33 / 33 papers shown
Title
Neural Interactive Proofs
Lewis Hammond
Sam Adam-Day
AAML
84
2
0
12 Dec 2024
Federated Communication-Efficient Multi-Objective Optimization
Baris Askin
Pranay Sharma
Gauri Joshi
Carlee Joe-Wong
FedML
66
1
0
21 Oct 2024
FALCON: Pinpointing and Mitigating Stragglers for Large-Scale Hybrid-Parallel Training
Tianyuan Wu
Wei Wang
Yinghao Yu
Siran Yang
Wenchao Wu
Qinkai Duan
Guodong Yang
Jiamang Wang
Lin Qu
Liping Zhang
35
6
0
16 Oct 2024
Breaking the Memory Wall for Heterogeneous Federated Learning via Model Splitting
Chunlin Tian
Li Li
Kahou Tam
Yebo Wu
Chengzhong Xu
FedML
29
1
0
12 Oct 2024
Quantized and Asynchronous Federated Learning
Tomàs Ortega
Hamid Jafarkhani
FedML
31
0
0
30 Sep 2024
FreeRide: Harvesting Bubbles in Pipeline Parallelism
Jiashu Zhang
Zihan Pan
Molly
Xu
Khuzaima S. Daudjee
90
0
0
11 Sep 2024
Compress and Compare: Interactively Evaluating Efficiency and Behavior Across ML Model Compression Experiments
Angie Boggust
Venkatesh Sivaraman
Yannick Assogba
Donghao Ren
Dominik Moritz
Fred Hohman
VLM
55
3
0
06 Aug 2024
ConvNLP: Image-based AI Text Detection
S. Jambunathan
Ashwath Shankarnarayan
Parijat Dube
DeLMO
44
0
0
09 Jul 2024
A Moonshot for AI Oracles in the Sciences
Bryan Kaiser
Tailin Wu
Maike Sonnewald
Colin Thackray
Skylar Callis
AI4CE
51
0
0
25 Jun 2024
Towards Dynamic Resource Allocation and Client Scheduling in Hierarchical Federated Learning: A Two-Phase Deep Reinforcement Learning Approach
Xiaojing Chen
Zhenyuan Li
Wei Ni
Xin Wang
Shunqing Zhang
Yanzan Sun
Shugong Xu
Qingqi Pei
30
2
0
21 Jun 2024
SlipStream: Adapting Pipelines for Distributed Training of Large DNNs Amid Failures
Swapnil Gandhi
Mark Zhao
Athinagoras Skiadopoulos
Christos Kozyrakis
AI4CE
GNN
43
8
0
22 May 2024
Automatic Generation of Model and Data Cards: A Step Towards Responsible AI
Jiarui Liu
Wenkai Li
Zhijing Jin
Mona T. Diab
SyDa
60
3
0
10 May 2024
I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey
Noah Lewis
J. L. Bez
Suren Byna
57
0
0
16 Apr 2024
Talaria: Interactively Optimizing Machine Learning Models for Efficient Inference
Fred Hohman
Chaoqun Wang
Jinmook Lee
Jochen Görtler
Dominik Moritz
Jeffrey P. Bigham
Zhile Ren
Cecile Foret
Qi Shan
Xiaoyi Zhang
32
7
0
03 Apr 2024
Learning with SASQuaTCh: a Novel Variational Quantum Transformer Architecture with Kernel-Based Self-Attention
Ethan N. Evans
Matthew G. Cook
Zachary P. Bradshaw
Margarite L. LaBorde
48
5
0
21 Mar 2024
Enhancing Instructional Quality: Leveraging Computer-Assisted Textual Analysis to Generate In-Depth Insights from Educational Artifacts
Zewei Tian
Min Sun
Alex Liu
Shawon Sarkar
Jing Liu
40
5
0
06 Mar 2024
Mobile Fitting Room: On-device Virtual Try-on via Diffusion Models
Justin Blalock
David Munechika
Harsha Karanth
Alec Helbling
Pratham Mehta
Seongmin Lee
Duen Horng Chau
DiffM
27
0
0
02 Feb 2024
Combining Cloud and Mobile Computing for Machine Learning
Ruiqi Xu
Tianchi Zhang
34
1
0
20 Jan 2024
The complementary contributions of academia and industry to AI research
Lizhen Liang
Zhuang Han
James Zou
Daniel Ernesto Acuna
13
3
0
04 Jan 2024
Ravnest: Decentralized Asynchronous Training on Heterogeneous Devices
A. Menon
Unnikrishnan Menon
Kailash Ahirwar
21
1
0
03 Jan 2024
On the Burstiness of Distributed Machine Learning Traffic
Natchanon Luangsomboon
Fahimeh Fazel
Jorg Liebeherr
A. Sobhani
Shichao Guan
Xingjun Chu
30
1
0
30 Dec 2023
Pathway to a fully data-driven geotechnics: lessons from materials informatics
Stephen Wu
Yu Otake
Yosuke Higo
Ikumasa Yoshida
AI4CE
21
4
0
01 Dec 2023
The Case for Universal Basic Computing Power
Yue Zhu
ELM
28
0
0
18 Nov 2023
Model Compression in Practice: Lessons Learned from Practitioners Creating On-device Machine Learning Experiences
Fred Hohman
Mary Beth Kery
Donghao Ren
Dominik Moritz
24
16
0
06 Oct 2023
Oobleck: Resilient Distributed Training of Large Models Using Pipeline Templates
Insu Jang
Zhenning Yang
Zhen Zhang
Xin Jin
Mosharaf Chowdhury
MoE
AI4CE
OODD
20
44
0
15 Sep 2023
STen: Productive and Efficient Sparsity in PyTorch
Andrei Ivanov
Nikoli Dryden
Tal Ben-Nun
Saleh Ashkboos
Torsten Hoefler
34
4
0
15 Apr 2023
Auditing large language models: a three-layered approach
Jakob Mokander
Jonas Schuett
Hannah Rose Kirk
Luciano Floridi
AILaw
MLAU
48
194
0
16 Feb 2023
M6-10T: A Sharing-Delinking Paradigm for Efficient Multi-Trillion Parameter Pretraining
Junyang Lin
An Yang
Jinze Bai
Chang Zhou
Le Jiang
...
Jie Zhang
Yong Li
Wei Lin
Jingren Zhou
Hongxia Yang
MoE
92
43
0
08 Oct 2021
Primer: Searching for Efficient Transformers for Language Modeling
David R. So
Wojciech Mañke
Hanxiao Liu
Zihang Dai
Noam M. Shazeer
Quoc V. Le
VLM
88
152
0
17 Sep 2021
Carbon Emissions and Large Neural Network Training
David A. Patterson
Joseph E. Gonzalez
Quoc V. Le
Chen Liang
Lluís-Miquel Munguía
D. Rothchild
David R. So
Maud Texier
J. Dean
AI4CE
244
644
0
21 Apr 2021
Meta Pseudo Labels
Hieu H. Pham
Zihang Dai
Qizhe Xie
Minh-Thang Luong
Quoc V. Le
VLM
262
656
0
23 Mar 2020
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
255
4,489
0
23 Jan 2020
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
M. Shoeybi
M. Patwary
Raul Puri
P. LeGresley
Jared Casper
Bryan Catanzaro
MoE
245
1,821
0
17 Sep 2019
1