ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.02391
  4. Cited By
Query-Efficient Adversarial Attack Based on Latin Hypercube Sampling

Query-Efficient Adversarial Attack Based on Latin Hypercube Sampling

5 July 2022
Daniel Wang
Jiayu Lin
Yuansheng Wang
    AAML
ArXiv (abs)PDFHTMLGithub

Papers citing "Query-Efficient Adversarial Attack Based on Latin Hypercube Sampling"

2 / 2 papers shown
Title
SoK: Pitfalls in Evaluating Black-Box Attacks
SoK: Pitfalls in Evaluating Black-Box Attacks
Fnu Suya
Anshuman Suri
Tingwei Zhang
Jingtao Hong
Yuan Tian
David Evans
AAML
102
6
0
26 Oct 2023
Foiling Explanations in Deep Neural Networks
Foiling Explanations in Deep Neural Networks
Snir Vitrack Tamam
Raz Lapid
Moshe Sipper
AAML
75
17
0
27 Nov 2022
1