ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.01426
  4. Cited By
Dynamic Contrastive Distillation for Image-Text Retrieval

Dynamic Contrastive Distillation for Image-Text Retrieval

4 July 2022
Jun Rao
Liang Ding
Shuhan Qi
Meng Fang
Yang Liu
Liqiong Shen
Dacheng Tao
    VLM
ArXivPDFHTML

Papers citing "Dynamic Contrastive Distillation for Image-Text Retrieval"

7 / 7 papers shown
Title
DKDM: Data-Free Knowledge Distillation for Diffusion Models with Any Architecture
DKDM: Data-Free Knowledge Distillation for Diffusion Models with Any Architecture
Qianlong Xiang
Miao Zhang
Yuzhang Shang
Jianlong Wu
Yan Yan
Liqiang Nie
DiffM
60
10
0
05 Sep 2024
E2S2: Encoding-Enhanced Sequence-to-Sequence Pretraining for Language
  Understanding and Generation
E2S2: Encoding-Enhanced Sequence-to-Sequence Pretraining for Language Understanding and Generation
Qihuang Zhong
Liang Ding
Juhua Liu
Bo Du
Dacheng Tao
36
27
0
30 May 2022
Parameter-Efficient and Student-Friendly Knowledge Distillation
Parameter-Efficient and Student-Friendly Knowledge Distillation
Jun Rao
Xv Meng
Liang Ding
Shuhan Qi
Dacheng Tao
37
46
0
28 May 2022
Emerging Properties in Self-Supervised Vision Transformers
Emerging Properties in Self-Supervised Vision Transformers
Mathilde Caron
Hugo Touvron
Ishan Misra
Hervé Jégou
Julien Mairal
Piotr Bojanowski
Armand Joulin
314
5,775
0
29 Apr 2021
Distilling Knowledge via Knowledge Review
Distilling Knowledge via Knowledge Review
Pengguang Chen
Shu-Lin Liu
Hengshuang Zhao
Jiaya Jia
149
420
0
19 Apr 2021
Understanding and Improving Lexical Choice in Non-Autoregressive
  Translation
Understanding and Improving Lexical Choice in Non-Autoregressive Translation
Liang Ding
Longyue Wang
Xuebo Liu
Derek F. Wong
Dacheng Tao
Zhaopeng Tu
96
77
0
29 Dec 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,136
0
06 Jun 2015
1