ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00675
  4. Cited By
VEDLIoT: Very Efficient Deep Learning in IoT

VEDLIoT: Very Efficient Deep Learning in IoT

1 July 2022
M. Kaiser
R. Griessl
N. Kucza
C. Haumann
L. Tigges
Kevin Mika
J. Hagemeyer
F. Porrmann
U. Rückert
M. vor dem Berge
S. Krupop
Mario Porrmann
M. Tassemeier
Pedro Trancoso
Fareed Qararyah
S. Zouzoula
A. Casimiro
A. Bessani
J. Cecílio
S. Andersson
O. Brunnegård
O. Eriksson
R. Weiss
F. Mcierhöfer
H. Salomonsson
E. Malekzadeh
D. Odman
A. Khurshid
Pascal Felber
Marcelo Pasin
V. Schiavoni
James Ménétrey
K. Gugala
P. Zierhoffer
E. Knauss
Hans-Martin Heyn
ArXivPDFHTML

Papers citing "VEDLIoT: Very Efficient Deep Learning in IoT"

2 / 2 papers shown
Title
An AI-Native Runtime for Multi-Wearable Environments
An AI-Native Runtime for Multi-Wearable Environments
Chulhong Min
Utku Günay Acer
S. Jang
Sangwon Choi
Diana A. Vasile
Taesik Gong
Juheon Yi
F. Kawsar
49
1
0
26 Mar 2024
VEDLIoT -- Next generation accelerated AIoT systems and applications
VEDLIoT -- Next generation accelerated AIoT systems and applications
Kevin Mika
R. Griessl
N. Kucza
F. Porrmann
M. Kaiser
...
Mario Porrmann
Hans-Martin Heyn
E. Knauss
Yufei Mao
Franz Meierhofer
33
2
0
09 May 2023
1