ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00529
  4. Cited By
Deep Learning and Symbolic Regression for Discovering Parametric
  Equations
v1v2 (latest)

Deep Learning and Symbolic Regression for Discovering Parametric Equations

1 July 2022
Michael Zhang
Samuel Kim
Peter Y. Lu
M. Soljavcić
ArXiv (abs)PDFHTML

Papers citing "Deep Learning and Symbolic Regression for Discovering Parametric Equations"

32 / 32 papers shown
Title
Evolving Form and Function: Dual-Objective Optimization in Neural Symbolic Regression Networks
Amanda Bertschinger
James P. Bagrow
Joshua Bongard
142
1
0
24 Feb 2025
Hierarchical Text-Conditional Image Generation with CLIP Latents
Hierarchical Text-Conditional Image Generation with CLIP Latents
Aditya A. Ramesh
Prafulla Dhariwal
Alex Nichol
Casey Chu
Mark Chen
VLMDiffM
413
6,908
0
13 Apr 2022
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
183
5,213
0
10 Jan 2022
HyperPINN: Learning parameterized differential equations with
  physics-informed hypernetworks
HyperPINN: Learning parameterized differential equations with physics-informed hypernetworks
Filipe de Avila Belbute-Peres
Yi-fan Chen
Fei Sha
PINN
55
40
0
28 Oct 2021
Discovering Sparse Interpretable Dynamics from Partial Observations
Discovering Sparse Interpretable Dynamics from Partial Observations
Peter Y. Lu
Joan Ariño Bernad
Marin Soljacic
AI4CE
64
25
0
22 Jul 2021
Machine learning accelerated computational fluid dynamics
Machine learning accelerated computational fluid dynamics
Dmitrii Kochkov
Jamie A. Smith
Ayya Alieva
Qing Wang
M. Brenner
Stephan Hoyer
AI4CE
130
873
0
28 Jan 2021
Using Machine Learning to Augment Coarse-Grid Computational Fluid
  Dynamics Simulations
Using Machine Learning to Augment Coarse-Grid Computational Fluid Dynamics Simulations
Jaideep Pathak
M. Mustafa
K. Kashinath
Emmanuel Motheau
Thorsten Kurth
M. Day
AI4CE
48
45
0
30 Sep 2020
Discovering Symbolic Models from Deep Learning with Inductive Biases
Discovering Symbolic Models from Deep Learning with Inductive Biases
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
75
481
0
19 Jun 2020
Deep-learning of Parametric Partial Differential Equations from Sparse
  and Noisy Data
Deep-learning of Parametric Partial Differential Equations from Sparse and Noisy Data
Hao Xu
Dongxiao Zhang
Junsheng Zeng
57
57
0
16 May 2020
Continual Deep Learning by Functional Regularisation of Memorable Past
Continual Deep Learning by Functional Regularisation of Memorable Past
Pingbo Pan
S. Swaroop
Alexander Immer
Runa Eschenhagen
Richard Turner
Mohammad Emtiyaz Khan
KELMCLL
52
143
0
29 Apr 2020
Meta-Learning in Neural Networks: A Survey
Meta-Learning in Neural Networks: A Survey
Timothy M. Hospedales
Antreas Antoniou
P. Micaelli
Amos Storkey
OOD
395
1,988
0
11 Apr 2020
iNALU: Improved Neural Arithmetic Logic Unit
iNALU: Improved Neural Arithmetic Logic Unit
Daniel Schlor
Markus Ring
Andreas Hotho
36
17
0
17 Mar 2020
Understanding Why Neural Networks Generalize Well Through GSNR of
  Parameters
Understanding Why Neural Networks Generalize Well Through GSNR of Parameters
Jinlong Liu
Guo-qing Jiang
Yunzhi Bai
Ting Chen
Huayan Wang
AI4CE
134
50
0
21 Jan 2020
Integration of Neural Network-Based Symbolic Regression in Deep Learning
  for Scientific Discovery
Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery
Samuel Kim
Peter Y. Lu
Srijon Mukherjee
M. Gilbert
Li Jing
V. Ceperic
Marin Soljacic
63
166
0
10 Dec 2019
Deep Double Descent: Where Bigger Models and More Data Hurt
Deep Double Descent: Where Bigger Models and More Data Hurt
Preetum Nakkiran
Gal Kaplun
Yamini Bansal
Tristan Yang
Boaz Barak
Ilya Sutskever
123
945
0
04 Dec 2019
Padé Activation Units: End-to-end Learning of Flexible Activation
  Functions in Deep Networks
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks
Alejandro Molina
P. Schramowski
Kristian Kersting
ODL
42
82
0
15 Jul 2019
AI Feynman: a Physics-Inspired Method for Symbolic Regression
AI Feynman: a Physics-Inspired Method for Symbolic Regression
S. Udrescu
Max Tegmark
163
881
0
27 May 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
57
241
0
14 Mar 2019
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep
  Network
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
76
553
0
30 Nov 2018
Generalization Error in Deep Learning
Generalization Error in Deep Learning
Daniel Jakubovitz
Raja Giryes
M. Rodrigues
AI4CE
191
111
0
03 Aug 2018
Neural Arithmetic Logic Units
Neural Arithmetic Logic Units
Andrew Trask
Felix Hill
Scott E. Reed
Jack W. Rae
Chris Dyer
Phil Blunsom
NAI
75
206
0
01 Aug 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
437
5,157
0
19 Jun 2018
Learning Equations for Extrapolation and Control
Learning Equations for Extrapolation and Control
Subham S. Sahoo
Christoph H. Lampert
Georg Martius
51
234
0
19 Jun 2018
Measuring and regularizing networks in function space
Measuring and regularizing networks in function space
Ari S. Benjamin
David Rolnick
Konrad Paul Kording
53
140
0
21 May 2018
Learning Sparse Neural Networks through $L_0$ Regularization
Learning Sparse Neural Networks through L0L_0L0​ Regularization
Christos Louizos
Max Welling
Diederik P. Kingma
436
1,147
0
04 Dec 2017
Meta Networks
Meta Networks
Tsendsuren Munkhdalai
Hong-ye Yu
GNNAI4CE
103
1,068
0
02 Mar 2017
The Concrete Distribution: A Continuous Relaxation of Discrete Random
  Variables
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
Chris J. Maddison
A. Mnih
Yee Whye Teh
BDL
198
2,537
0
02 Nov 2016
Extrapolation and learning equations
Extrapolation and learning equations
Georg Martius
Christoph H. Lampert
43
159
0
10 Oct 2016
HyperNetworks
HyperNetworks
David R Ha
Andrew M. Dai
Quoc V. Le
168
1,632
0
27 Sep 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN3DV
793
36,881
0
25 Aug 2016
Learning to learn by gradient descent by gradient descent
Learning to learn by gradient descent by gradient descent
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
124
2,008
0
14 Jun 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,426
0
10 Dec 2015
1