ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.00067
  4. Cited By
Rethinking Unsupervised Domain Adaptation for Semantic Segmentation

Rethinking Unsupervised Domain Adaptation for Semantic Segmentation

30 June 2022
Zhijie Wang
Masanori Suganuma
Takayuki Okatani
    OOD
ArXivPDFHTML

Papers citing "Rethinking Unsupervised Domain Adaptation for Semantic Segmentation"

5 / 5 papers shown
Title
Few-Shot Segmentation Without Meta-Learning: A Good Transductive
  Inference Is All You Need?
Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?
Malik Boudiaf
H. Kervadec
Imtiaz Masud Ziko
Pablo Piantanida
Ismail Ben Ayed
Jose Dolz
VLM
171
187
0
11 Dec 2020
Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
Yangtao Zheng
Di Huang
Songtao Liu
Yunhong Wang
ObjD
163
198
0
23 Mar 2020
Frustratingly Simple Few-Shot Object Detection
Frustratingly Simple Few-Shot Object Detection
Xin Wang
Thomas E. Huang
Trevor Darrell
Joseph E. Gonzalez
F. I. F. Richard Yu
ObjD
92
544
0
16 Mar 2020
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain
  Adaptive Semantic Segmentation
Rectifying Pseudo Label Learning via Uncertainty Estimation for Domain Adaptive Semantic Segmentation
Zhedong Zheng
Yi Yang
NoLa
182
497
0
08 Mar 2020
Confidence Regularized Self-Training
Confidence Regularized Self-Training
Yang Zou
Zhiding Yu
Xiaofeng Liu
B. Kumar
Jinsong Wang
230
789
0
26 Aug 2019
1