ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.14903
  4. Cited By
CIRDataset: A large-scale Dataset for Clinically-Interpretable lung
  nodule Radiomics and malignancy prediction

CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Radiomics and malignancy prediction

29 June 2022
Wookjin Choi
N. Dahiya
Saad Nadeem
ArXiv (abs)PDFHTMLGithub (33★)

Papers citing "CIRDataset: A large-scale Dataset for Clinically-Interpretable lung nodule Radiomics and malignancy prediction"

3 / 3 papers shown
Title
Assessing the (Un)Trustworthiness of Saliency Maps for Localizing
  Abnormalities in Medical Imaging
Assessing the (Un)Trustworthiness of Saliency Maps for Localizing Abnormalities in Medical Imaging
N. Arun
N. Gaw
P. Singh
Ken Chang
M. Aggarwal
...
J. Patel
M. Gidwani
Julius Adebayo
M. D. Li
Jayashree Kalpathy-Cramer
FAtt
96
110
0
06 Aug 2020
Voxel2Mesh: 3D Mesh Model Generation from Volumetric Data
Voxel2Mesh: 3D Mesh Model Generation from Volumetric Data
Udaranga Wickramasinghe
Edoardo Remelli
G. Knott
Pascal Fua
84
96
0
08 Dec 2019
Characterization of Lung Nodule Malignancy using Hybrid Shape and
  Appearance Features
Characterization of Lung Nodule Malignancy using Hybrid Shape and Appearance Features
Mario Buty
Ziyue Xu
Mingchen Gao
Ulas Bagci
Aaron Wu
D. Mollura
62
52
0
21 Sep 2016
1