ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.14262
  4. Cited By
Supervised Training of Conditional Monge Maps

Supervised Training of Conditional Monge Maps

28 June 2022
Charlotte Bunne
Andreas Krause
Marco Cuturi
    OT
ArXivPDFHTML

Papers citing "Supervised Training of Conditional Monge Maps"

22 / 22 papers shown
Title
Gradient Networks
Gradient Networks
Shreyas Chaudhari
Srinivasa Pranav
J. M. F. Moura
58
0
0
28 Jan 2025
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction
Yanshuo Chen
Zhengmian Hu
Wei Chen
Heng Huang
OT
52
2
0
01 Nov 2024
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold
Lazar Atanackovic
Xi Zhang
Brandon Amos
Mathieu Blanchette
Leo J. Lee
Yoshua Bengio
Alexander Tong
Kirill Neklyudov
39
6
0
26 Aug 2024
Generative Conditional Distributions by Neural (Entropic) Optimal
  Transport
Generative Conditional Distributions by Neural (Entropic) Optimal Transport
Bao Nguyen
Binh Nguyen
Hieu Trung Nguyen
Viet Anh Nguyen
OT
50
1
0
04 Jun 2024
On a Neural Implementation of Brenier's Polar Factorization
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
45
2
0
05 Mar 2024
Nonlinear Filtering with Brenier Optimal Transport Maps
Nonlinear Filtering with Brenier Optimal Transport Maps
Mohammad Al-Jarrah
Niyizhen Jin
Bamdad Hosseini
Amirhossein Taghvaei
34
2
0
21 Oct 2023
A Computational Framework for Solving Wasserstein Lagrangian Flows
A Computational Framework for Solving Wasserstein Lagrangian Flows
Kirill Neklyudov
Rob Brekelmans
Alexander Tong
Lazar Atanackovic
Qiang Liu
Alireza Makhzani
OT
40
18
0
16 Oct 2023
Decorrelation using Optimal Transport
Decorrelation using Optimal Transport
M. Algren
J. A. Raine
T. Golling
OT
30
1
0
11 Jul 2023
Generating Synthetic Datasets by Interpolating along Generalized
  Geodesics
Generating Synthetic Datasets by Interpolating along Generalized Geodesics
JiaoJiao Fan
David Alvarez-Melis
24
10
0
12 Jun 2023
Consistent Optimal Transport with Empirical Conditional Measures
Consistent Optimal Transport with Empirical Conditional Measures
Piyushi Manupriya
Rachit Keerti Das
Sayantan Biswas
S. Jagarlapudi
OT
37
3
0
25 May 2023
Aligned Diffusion Schrödinger Bridges
Aligned Diffusion Schrödinger Bridges
Vignesh Ram Somnath
Matteo Pariset
Ya-Ping Hsieh
María Rodríguez Martínez
Andreas Krause
Charlotte Bunne
DiffM
117
30
0
22 Feb 2023
The Monge Gap: A Regularizer to Learn All Transport Maps
The Monge Gap: A Regularizer to Learn All Transport Maps
Théo Uscidda
Marco Cuturi
OT
55
27
0
09 Feb 2023
Minimax estimation of discontinuous optimal transport maps: The
  semi-discrete case
Minimax estimation of discontinuous optimal transport maps: The semi-discrete case
Aram-Alexandre Pooladian
Vincent Divol
Jonathan Niles-Weed
OT
25
20
0
26 Jan 2023
Optimal transport map estimation in general function spaces
Optimal transport map estimation in general function spaces
Vincent Divol
Jonathan Niles-Weed
Aram-Alexandre Pooladian
OT
38
22
0
07 Dec 2022
Meta Optimal Transport
Meta Optimal Transport
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
32
22
0
10 Jun 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Marco Cuturi
Laetitia Meng-Papaxanthos
Yingtao Tian
Charlotte Bunne
Geoff Davis
O. Teboul
OT
143
96
0
28 Jan 2022
Entropic estimation of optimal transport maps
Entropic estimation of optimal transport maps
Aram-Alexandre Pooladian
Jonathan Niles-Weed
OT
82
105
0
24 Sep 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
Wasserstein-2 Generative Networks
Wasserstein-2 Generative Networks
Alexander Korotin
Vage Egiazarian
Arip Asadulaev
Alexander Safin
E. Burnaev
GAN
131
101
0
28 Sep 2019
Input Convex Neural Networks
Input Convex Neural Networks
Brandon Amos
Lei Xu
J. Zico Kolter
187
601
0
22 Sep 2016
Efficient Estimation of Word Representations in Vector Space
Efficient Estimation of Word Representations in Vector Space
Tomáš Mikolov
Kai Chen
G. Corrado
J. Dean
3DV
281
31,267
0
16 Jan 2013
1