ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.13888
  4. Cited By
Explaining Any ML Model? -- On Goals and Capabilities of XAI

Explaining Any ML Model? -- On Goals and Capabilities of XAI

28 June 2022
Moritz Renftle
Holger Trittenbach
M. Poznic
Reinhard Heil
    ELM
ArXivPDFHTML

Papers citing "Explaining Any ML Model? -- On Goals and Capabilities of XAI"

22 / 22 papers shown
Title
Neurosymbolic AI: The 3rd Wave
Neurosymbolic AI: The 3rd Wave
Artur Garcez
Luís C. Lamb
NAI
90
308
0
10 Dec 2020
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Neural Prototype Trees for Interpretable Fine-grained Image Recognition
Meike Nauta
Ron van Bree
C. Seifert
145
266
0
03 Dec 2020
Interpretable Random Forests via Rule Extraction
Interpretable Random Forests via Rule Extraction
Clément Bénard
Gérard Biau
Sébastien Da Veiga
Erwan Scornet
33
58
0
29 Apr 2020
The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
The Pragmatic Turn in Explainable Artificial Intelligence (XAI)
Andrés Páez
66
196
0
22 Feb 2020
Questioning the AI: Informing Design Practices for Explainable AI User
  Experiences
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
117
716
0
08 Jan 2020
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
118
6,266
0
22 Oct 2019
Metrics for Explainable AI: Challenges and Prospects
Metrics for Explainable AI: Challenges and Prospects
R. Hoffman
Shane T. Mueller
Gary Klein
Jordan Litman
XAI
77
727
0
11 Dec 2018
Explaining Explanations in AI
Explaining Explanations in AI
Brent Mittelstadt
Chris Russell
Sandra Wachter
XAI
91
665
0
04 Nov 2018
Interpretable Textual Neuron Representations for NLP
Interpretable Textual Neuron Representations for NLP
Nina Poerner
Benjamin Roth
Hinrich Schütze
FAtt
AI4CE
MILM
36
26
0
19 Sep 2018
Interpretable to Whom? A Role-based Model for Analyzing Interpretable
  Machine Learning Systems
Interpretable to Whom? A Role-based Model for Analyzing Interpretable Machine Learning Systems
Richard J. Tomsett
Dave Braines
Daniel Harborne
Alun D. Preece
Supriyo Chakraborty
FaML
116
166
0
20 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
86
1,858
0
31 May 2018
A Survey Of Methods For Explaining Black Box Models
A Survey Of Methods For Explaining Black Box Models
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
124
3,957
0
06 Feb 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
211
1,842
0
30 Nov 2017
Explainable Artificial Intelligence: Understanding, Visualizing and
  Interpreting Deep Learning Models
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAI
VLM
72
1,189
0
28 Aug 2017
Interpreting Blackbox Models via Model Extraction
Interpreting Blackbox Models via Model Extraction
Osbert Bastani
Carolyn Kim
Hamsa Bastani
FAtt
64
172
0
23 May 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
21,906
0
22 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual
  Representations
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
146
1,516
1
19 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
188
5,986
0
04 Mar 2017
European Union regulations on algorithmic decision-making and a "right
  to explanation"
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
63
1,900
0
28 Jun 2016
The Mythos of Model Interpretability
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
180
3,699
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
16,976
0
16 Feb 2016
Distributed Representations of Sentences and Documents
Distributed Representations of Sentences and Documents
Quoc V. Le
Tomas Mikolov
FaML
254
9,242
0
16 May 2014
1