Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.13089
Cited By
Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift
27 June 2022
Christina Baek
Yiding Jiang
Aditi Raghunathan
Zico Kolter
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Agreement-on-the-Line: Predicting the Performance of Neural Networks under Distribution Shift"
18 / 18 papers shown
Title
Performance Estimation in Binary Classification Using Calibrated Confidence
Juhani Kivimäki
Jakub Białek
W. Kuberski
J. Nurminen
50
0
0
08 May 2025
Always Tell Me The Odds: Fine-grained Conditional Probability Estimation
Liaoyaqi Wang
Zhengping Jiang
Anqi Liu
Benjamin Van Durme
61
0
0
02 May 2025
UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning
Long Zhou
Fereshteh Shakeri
Aymen Sadraoui
Mounir Kaaniche
J. Pesquet
Ismail Ben Ayed
VLM
86
0
0
21 Dec 2024
What Does Softmax Probability Tell Us about Classifiers Ranking Across Diverse Test Conditions?
Weijie Tu
Weijian Deng
Liang Zheng
Tom Gedeon
40
0
0
14 Jun 2024
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
16
11
0
29 Sep 2023
Anchor Points: Benchmarking Models with Much Fewer Examples
Rajan Vivek
Kawin Ethayarajh
Diyi Yang
Douwe Kiela
ALM
29
22
0
14 Sep 2023
Learning Diverse Features in Vision Transformers for Improved Generalization
A. Nicolicioiu
Andrei Liviu Nicolicioiu
B. Alexe
Damien Teney
33
3
0
30 Aug 2023
Performance Scaling via Optimal Transport: Enabling Data Selection from Partially Revealed Sources
Feiyang Kang
H. Just
Anit Kumar Sahu
R. Jia
59
10
0
05 Jul 2023
Confidence-Based Model Selection: When to Take Shortcuts for Subpopulation Shifts
Annie S. Chen
Yoonho Lee
Amrith Rajagopal Setlur
Sergey Levine
Chelsea Finn
OOD
16
5
0
19 Jun 2023
DC4L: Distribution Shift Recovery via Data-Driven Control for Deep Learning Models
Vivian Lin
Kuk Jin Jang
Souradeep Dutta
Michele Caprio
O. Sokolsky
Insup Lee
OOD
31
6
0
20 Feb 2023
Demystifying Disagreement-on-the-Line in High Dimensions
Dong-Hwan Lee
Behrad Moniri
Xinmeng Huang
Yan Sun
Hamed Hassani
21
8
0
31 Jan 2023
Assaying Out-Of-Distribution Generalization in Transfer Learning
F. Wenzel
Andrea Dittadi
Peter V. Gehler
Carl-Johann Simon-Gabriel
Max Horn
...
Chris Russell
Thomas Brox
Bernt Schiele
Bernhard Schölkopf
Francesco Locatello
OOD
OODD
AAML
60
71
0
19 Jul 2022
On the Strong Correlation Between Model Invariance and Generalization
Weijian Deng
Stephen Gould
Liang Zheng
OOD
32
16
0
14 Jul 2022
A Note on "Assessing Generalization of SGD via Disagreement"
Andreas Kirsch
Y. Gal
FedML
UQCV
23
15
0
03 Feb 2022
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
223
512
0
11 Feb 2021
Bottleneck Transformers for Visual Recognition
A. Srinivas
Nayeon Lee
Niki Parmar
Jonathon Shlens
Pieter Abbeel
Ashish Vaswani
SLR
290
979
0
27 Jan 2021
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Z. Tu
Kaiming He
297
10,220
0
16 Nov 2016
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
789
0
19 Feb 2009
1