Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.12314
Cited By
Learning sparse features can lead to overfitting in neural networks
24 June 2022
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning sparse features can lead to overfitting in neural networks"
16 / 16 papers shown
Title
Weak-to-Strong Generalization Even in Random Feature Networks, Provably
Marko Medvedev
Kaifeng Lyu
Dingli Yu
Sanjeev Arora
Zhiyuan Li
Nathan Srebro
107
0
0
04 Mar 2025
Features are fate: a theory of transfer learning in high-dimensional regression
Javan Tahir
Surya Ganguli
Grant M. Rotskoff
32
1
0
10 Oct 2024
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
68
12
0
24 May 2024
CDMPP: A Device-Model Agnostic Framework for Latency Prediction of Tensor Programs
Hanpeng Hu
Junwei Su
Juntao Zhao
Yanghua Peng
Yibo Zhu
Haibin Lin
Chuan Wu
16
1
0
16 Nov 2023
Local Kernel Renormalization as a mechanism for feature learning in overparametrized Convolutional Neural Networks
R. Aiudi
R. Pacelli
A. Vezzani
R. Burioni
P. Rotondo
MLT
21
15
0
21 Jul 2023
How Two-Layer Neural Networks Learn, One (Giant) Step at a Time
Yatin Dandi
Florent Krzakala
Bruno Loureiro
Luca Pesce
Ludovic Stephan
MLT
34
25
0
29 May 2023
Tight conditions for when the NTK approximation is valid
Enric Boix-Adserà
Etai Littwin
30
0
0
22 May 2023
Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models
Guillermo Ortiz-Jiménez
Alessandro Favero
P. Frossard
MoMe
48
106
0
22 May 2023
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
324
48
0
29 Sep 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
19
58
0
02 Jun 2022
Data-driven emergence of convolutional structure in neural networks
Alessandro Ingrosso
Sebastian Goldt
50
38
0
01 Feb 2022
Towards Learning Convolutions from Scratch
Behnam Neyshabur
SSL
220
71
0
27 Jul 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
52
34
0
22 Jul 2020
Spectrum Dependent Learning Curves in Kernel Regression and Wide Neural Networks
Blake Bordelon
Abdulkadir Canatar
C. Pehlevan
139
201
0
07 Feb 2020
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
119
577
0
27 Feb 2015
1