ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.12112
  4. Cited By
Dissecting U-net for Seismic Application: An In-Depth Study on Deep
  Learning Multiple Removal

Dissecting U-net for Seismic Application: An In-Depth Study on Deep Learning Multiple Removal

24 June 2022
Ricard Durall
A. Ghanim
N. Ettrich
J. Keuper
ArXiv (abs)PDFHTML

Papers citing "Dissecting U-net for Seismic Application: An In-Depth Study on Deep Learning Multiple Removal"

2 / 2 papers shown
Title
On Empirical Comparisons of Optimizers for Deep Learning
On Empirical Comparisons of Optimizers for Deep Learning
Dami Choi
Christopher J. Shallue
Zachary Nado
Jaehoon Lee
Chris J. Maddison
George E. Dahl
107
259
0
11 Oct 2019
The Marginal Value of Adaptive Gradient Methods in Machine Learning
The Marginal Value of Adaptive Gradient Methods in Machine Learning
Ashia Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
ODL
91
1,032
0
23 May 2017
1