ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.11254
  4. Cited By
Langevin Monte Carlo for Contextual Bandits

Langevin Monte Carlo for Contextual Bandits

22 June 2022
Pan Xu
Hongkai Zheng
Eric Mazumdar
Kamyar Azizzadenesheli
Anima Anandkumar
ArXivPDFHTML

Papers citing "Langevin Monte Carlo for Contextual Bandits"

24 / 24 papers shown
Title
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
Variance-Aware Linear UCB with Deep Representation for Neural Contextual Bandits
H. Bui
Enrique Mallada
Anqi Liu
415
1
0
08 Nov 2024
Neural Contextual Bandits with Deep Representation and Shallow
  Exploration
Neural Contextual Bandits with Deep Representation and Shallow Exploration
Pan Xu
Zheng Wen
Handong Zhao
Quanquan Gu
OffRL
62
76
0
03 Dec 2020
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
79
36
0
19 Oct 2020
Neural Thompson Sampling
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
55
119
0
02 Oct 2020
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic
  Gradient Descent and Thompson Sampling
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling
Qin Ding
Cho-Jui Hsieh
James Sharpnack
37
37
0
07 Jun 2020
Stochastic Linear Contextual Bandits with Diverse Contexts
Stochastic Linear Contextual Bandits with Diverse Contexts
Weiqiang Wu
Jing Yang
Cong Shen
76
13
0
05 Mar 2020
MOTS: Minimax Optimal Thompson Sampling
MOTS: Minimax Optimal Thompson Sampling
Tianyuan Jin
Pan Xu
Jieming Shi
Xiaokui Xiao
Quanquan Gu
46
32
0
03 Mar 2020
Thompson Sampling via Local Uncertainty
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
40
19
0
30 Oct 2019
Thompson Sampling with Approximate Inference
Thompson Sampling with Approximate Inference
My Phan
Yasin Abbasi-Yadkori
Justin Domke
47
28
0
14 Aug 2019
Randomized Exploration in Generalized Linear Bandits
Randomized Exploration in Generalized Linear Bandits
Branislav Kveton
Manzil Zaheer
Csaba Szepesvári
Lihong Li
Mohammad Ghavamzadeh
Craig Boutilier
40
97
0
21 Jun 2019
On the Performance of Thompson Sampling on Logistic Bandits
On the Performance of Thompson Sampling on Logistic Bandits
Shi Dong
Tengyu Ma
Benjamin Van Roy
45
39
0
12 May 2019
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry
  Suffices
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices
Santosh Vempala
Andre Wibisono
79
264
0
20 Mar 2019
Stochastic Linear Bandits with Hidden Low Rank Structure
Stochastic Linear Bandits with Hidden Low Rank Structure
Sahin Lale
Kamyar Azizzadenesheli
Anima Anandkumar
B. Hassibi
96
29
0
28 Jan 2019
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
C. Riquelme
George Tucker
Jasper Snoek
BDL
62
365
0
26 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
65
296
0
29 Sep 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
68
205
0
20 Jul 2017
Further and stronger analogy between sampling and optimization: Langevin
  Monte Carlo and gradient descent
Further and stronger analogy between sampling and optimization: Langevin Monte Carlo and gradient descent
A. Dalalyan
BDL
45
174
0
16 Apr 2017
Provably Optimal Algorithms for Generalized Linear Contextual Bandits
Provably Optimal Algorithms for Generalized Linear Contextual Bandits
Lihong Li
Yu Lu
Dengyong Zhou
120
94
0
28 Feb 2017
A minimax and asymptotically optimal algorithm for stochastic bandits
A minimax and asymptotically optimal algorithm for stochastic bandits
Pierre Ménard
Aurélien Garivier
60
60
0
23 Feb 2017
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
66
514
0
23 Dec 2014
Learning to Optimize Via Posterior Sampling
Learning to Optimize Via Posterior Sampling
Daniel Russo
Benjamin Van Roy
185
699
0
11 Jan 2013
Thompson Sampling for Contextual Bandits with Linear Payoffs
Thompson Sampling for Contextual Bandits with Linear Payoffs
Shipra Agrawal
Navin Goyal
184
997
0
15 Sep 2012
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
Thompson Sampling: An Asymptotically Optimal Finite Time Analysis
E. Kaufmann
N. Korda
Rémi Munos
149
588
0
18 May 2012
A Contextual-Bandit Approach to Personalized News Article Recommendation
A Contextual-Bandit Approach to Personalized News Article Recommendation
Lihong Li
Wei Chu
John Langford
Robert Schapire
427
2,944
0
28 Feb 2010
1