ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.11126
  4. Cited By
Explanation-based Counterfactual Retraining(XCR): A Calibration Method
  for Black-box Models

Explanation-based Counterfactual Retraining(XCR): A Calibration Method for Black-box Models

22 June 2022
Liu Zhendong
Wenyu Jiang
Yan Zhang
Chongjun Wang
    CML
ArXivPDFHTML

Papers citing "Explanation-based Counterfactual Retraining(XCR): A Calibration Method for Black-box Models"

4 / 4 papers shown
Title
Discovering and Explaining the Representation Bottleneck of DNNs
Discovering and Explaining the Representation Bottleneck of DNNs
Huiqi Deng
Qihan Ren
Hao Zhang
Quanshi Zhang
39
59
0
11 Nov 2021
A Unified Game-Theoretic Interpretation of Adversarial Robustness
A Unified Game-Theoretic Interpretation of Adversarial Robustness
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
...
Xu Cheng
Xin Wang
Meng Zhou
Jie Shi
Quanshi Zhang
AAML
72
22
0
12 Mar 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,661
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,138
0
06 Jun 2015
1