ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.10911
  4. Cited By
Influence of uncertainty estimation techniques on false-positive
  reduction in liver lesion detection
v1v2v3v4 (latest)

Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection

22 June 2022
Ishaan Bhat
J. Pluim
M. Viergever
Hugo J. Kuijf
    MedIm
ArXiv (abs)PDFHTMLGithub (1★)

Papers citing "Influence of uncertainty estimation techniques on false-positive reduction in liver lesion detection"

37 / 37 papers shown
Title
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCVBDL
224
51
0
01 May 2022
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to
  Multi-Class Segmentation
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
74
12
0
22 Sep 2021
Using uncertainty estimation to reduce false positives in liver lesion
  detection
Using uncertainty estimation to reduce false positives in liver lesion detection
Ishaan Bhat
Hugo J. Kuijf
Veronika Cheplygina
J. Pluim
MedIm
118
9
0
12 Jan 2021
Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation:
  A Benchmark Study
Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark Study
Matthew Ng
F. Guo
L. Biswas
S. Petersen
Stefan K. Piechnik
S. Neubauer
G. Wright
UQCV
68
33
0
31 Dec 2020
Overcoming the limitations of patch-based learning to detect cancer in
  whole slide images
Overcoming the limitations of patch-based learning to detect cancer in whole slide images
Ozan Ciga
Tony Xu
S. Nofech-Mozes
S. Noy
F. Lu
Anne L. Martel
68
41
0
01 Dec 2020
Automatic segmentation with detection of local segmentation failures in
  cardiac MRI
Automatic segmentation with detection of local segmentation failures in cardiac MRI
Jörg Sander
B. D. de Vos
Ivana Išgum
94
50
0
13 Nov 2020
A review of deep learning in medical imaging: Imaging traits, technology
  trends, case studies with progress highlights, and future promises
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
S. Kevin Zhou
H. Greenspan
Christos Davatzikos
James S. Duncan
Bram van Ginneken
A. Madabhushi
Jerry L. Prince
Daniel Rueckert
Ronald M. Summers
190
642
0
02 Aug 2020
Reinforcement Learning with Uncertainty Estimation for Tactical
  Decision-Making in Intersections
Reinforcement Learning with Uncertainty Estimation for Tactical Decision-Making in Intersections
C. Hoel
Tommy Tram
J. Sjöberg
61
30
0
17 Jun 2020
Causality matters in medical imaging
Causality matters in medical imaging
Daniel Coelho De Castro
Ian Walker
Ben Glocker
CML
53
346
0
17 Dec 2019
Deep Ensembles: A Loss Landscape Perspective
Deep Ensembles: A Loss Landscape Perspective
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
OODUQCV
125
629
0
05 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
556
42,639
0
03 Dec 2019
Confidence Calibration and Predictive Uncertainty Estimation for Deep
  Medical Image Segmentation
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
Alireza Mehrtash
W. Wells
C. Tempany
Purang Abolmaesumi
Tina Kapur
OODFedMLUQCV
130
276
0
29 Nov 2019
Liver segmentation and metastases detection in MR images using
  convolutional neural networks
Liver segmentation and metastases detection in MR images using convolutional neural networks
M. J. Jansen
Hugo J. Kuijf
M. Niekel
W. Veldhuis
F. Wessels
M. Viergever
J. Pluim
MedIm
38
36
0
15 Oct 2019
A General Framework for Uncertainty Estimation in Deep Learning
A General Framework for Uncertainty Estimation in Deep Learning
Antonio Loquercio
Mattia Segu
Davide Scaramuzza
UQCVBDLOOD
68
293
0
16 Jul 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
187
1,705
0
06 Jun 2019
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly
  Detection in Retinal OCT
Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT
Philipp Seeböck
J. Orlando
T. Schlegl
S. Waldstein
Hrvoje Bogunović
S. Klimscha
Georg Langs
U. Schmidt-Erfurth
UQCV
120
137
0
29 May 2019
The Liver Tumor Segmentation Benchmark (LiTS)
The Liver Tumor Segmentation Benchmark (LiTS)
Patrick Bilic
P. Christ
Hongwei Bran Li
Eugene Vorontsov
Avi Ben-Cohen
...
L. Soler
Bram van Ginneken
H. Greenspan
Leo Joskowicz
Bjoern Menze
128
1,028
0
13 Jan 2019
Towards increased trustworthiness of deep learning segmentation methods
  on cardiac MRI
Towards increased trustworthiness of deep learning segmentation methods on cardiac MRI
Jörg Sander
B. D. de Vos
J. Wolterink
Ivana Išgum
52
59
0
27 Sep 2018
Joint Segmentation and Uncertainty Visualization of Retinal Layers in
  Optical Coherence Tomography Images using Bayesian Deep Learning
Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images using Bayesian Deep Learning
S. Sedai
B. Antony
Dwarikanath Mahapatra
R. Garnavi
UQCV
59
62
0
12 Sep 2018
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis
  Lesion Detection and Segmentation
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
T. Nair
Doina Precup
Douglas L. Arnold
Tal Arbel
UQCV
65
446
0
03 Aug 2018
Aleatoric uncertainty estimation with test-time augmentation for medical
  image segmentation with convolutional neural networks
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang
Wenqi Li
Michael Aertsen
Jan Deprest
Sebastien Ourselin
Tom Vercauteren
UQCVMedImOOD
163
593
0
19 Jul 2018
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Terrance Devries
Graham W. Taylor
UQCV
122
114
0
02 Jul 2018
Towards safe deep learning: accurately quantifying biomarker uncertainty
  in neural network predictions
Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network predictions
Zach Eaton-Rosen
Felix J. S. Bragman
Sotirios Bisdas
Sebastien Ourselin
M. Jorge Cardoso
UQCV
63
87
0
22 Jun 2018
MILD-Net: Minimal Information Loss Dilated Network for Gland Instance
  Segmentation in Colon Histology Images
MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images
S. Graham
Hao Chen
Jevgenij Gamper
Qi Dou
Pheng-Ann Heng
David R. J. Snead
Yee Wah Tsang
Nasir M. Rajpoot
MedIm
75
308
0
05 Jun 2018
Inherent Brain Segmentation Quality Control from Fully ConvNet Monte
  Carlo Sampling
Inherent Brain Segmentation Quality Control from Fully ConvNet Monte Carlo Sampling
Abhijit Guha Roy
Sailesh Conjeti
Nassir Navab
Christian Wachinger
UQCV
49
87
0
19 Apr 2018
Understanding Measures of Uncertainty for Adversarial Example Detection
Understanding Measures of Uncertainty for Adversarial Example Detection
Lewis Smith
Y. Gal
UQCV
96
365
0
22 Mar 2018
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,877
0
14 Jun 2017
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
708
10,826
0
19 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCVBDL
847
5,847
0
05 Dec 2016
Distribution-Free Predictive Inference For Regression
Distribution-Free Predictive Inference For Regression
Jing Lei
M. G'Sell
Alessandro Rinaldo
Robert Tibshirani
Larry A. Wasserman
418
845
0
14 Apr 2016
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder
  Architectures for Scene Understanding
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
Alex Kendall
Vijay Badrinarayanan
R. Cipolla
UQCVBDL
94
1,066
0
09 Nov 2015
Variational Dropout and the Local Reparameterization Trick
Variational Dropout and the Local Reparameterization Trick
Diederik P. Kingma
Tim Salimans
Max Welling
BDL
229
1,517
0
08 Jun 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
867
9,353
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCVBDL
192
1,894
0
20 May 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,441
0
18 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
SMOTE: Synthetic Minority Over-sampling Technique
SMOTE: Synthetic Minority Over-sampling Technique
Nitesh Chawla
Kevin W. Bowyer
Lawrence Hall
W. Kegelmeyer
AI4TS
388
25,747
0
09 Jun 2011
1