Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.09909
Cited By
Low-Precision Stochastic Gradient Langevin Dynamics
20 June 2022
Ruqi Zhang
A. Wilson
Chris De Sa
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Low-Precision Stochastic Gradient Langevin Dynamics"
37 / 37 papers shown
Title
On the Effects of Quantisation on Model Uncertainty in Bayesian Neural Networks
Martin Ferianc
Partha P. Maji
Matthew Mattina
Miguel R. D. Rodrigues
UQCV
BDL
54
9
0
22 Feb 2021
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
54
28
0
19 Oct 2020
Training Binary Neural Networks using the Bayesian Learning Rule
Xiangming Meng
Roman Bachmann
Mohammad Emtiyaz Khan
BDL
MQ
59
42
0
25 Feb 2020
Sampling-Free Learning of Bayesian Quantized Neural Networks
Jiahao Su
Milan Cvitkovic
Furong Huang
BDL
MQ
UQCV
39
7
0
06 Dec 2019
Computational Separations between Sampling and Optimization
Kunal Talwar
44
12
0
05 Nov 2019
QPyTorch: A Low-Precision Arithmetic Simulation Framework
Tianyi Zhang
Zhiqiu Lin
Guandao Yang
Christopher De Sa
MQ
45
66
0
09 Oct 2019
Bayesian Inference for Large Scale Image Classification
Jonathan Heek
Nal Kalchbrenner
UQCV
BDL
91
33
0
09 Aug 2019
SWALP : Stochastic Weight Averaging in Low-Precision Training
Guandao Yang
Tianyi Zhang
Polina Kirichenko
Junwen Bai
A. Wilson
Christopher De Sa
51
97
0
26 Apr 2019
Learned Step Size Quantization
S. K. Esser
J. McKinstry
Deepika Bablani
R. Appuswamy
D. Modha
MQ
71
798
0
21 Feb 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
72
275
0
11 Feb 2019
Training Deep Neural Networks with 8-bit Floating Point Numbers
Naigang Wang
Jungwook Choi
D. Brand
Chia-Yu Chen
K. Gopalakrishnan
MQ
58
500
0
19 Dec 2018
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
65
184
0
20 Nov 2018
Adversarial Distillation of Bayesian Neural Network Posteriors
Kuan-Chieh Wang
Paul Vicol
James Lucas
Li Gu
Roger C. Grosse
R. Zemel
UQCV
GAN
AAML
BDL
47
56
0
27 Jun 2018
Quantizing deep convolutional networks for efficient inference: A whitepaper
Raghuraman Krishnamoorthi
MQ
127
1,013
0
21 Jun 2018
Binary Ensemble Neural Network: More Bits per Network or More Networks per Bit?
Shilin Zhu
Xin Dong
Hao Su
MQ
66
137
0
20 Jun 2018
Scalable Methods for 8-bit Training of Neural Networks
Ron Banner
Itay Hubara
Elad Hoffer
Daniel Soudry
MQ
84
337
0
25 May 2018
Training and Inference with Integers in Deep Neural Networks
Shuang Wu
Guoqi Li
F. Chen
Luping Shi
MQ
57
390
0
13 Feb 2018
VIBNN: Hardware Acceleration of Bayesian Neural Networks
R. Cai
Ao Ren
Ning Liu
Caiwen Ding
Luhao Wang
Xuehai Qian
Massoud Pedram
Yanzhi Wang
BDL
73
87
0
02 Feb 2018
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
Benoit Jacob
S. Kligys
Bo Chen
Menglong Zhu
Matthew Tang
Andrew G. Howard
Hartwig Adam
Dmitry Kalenichenko
MQ
139
3,111
0
15 Dec 2017
Mixed Precision Training
Paulius Micikevicius
Sharan Narang
Jonah Alben
G. Diamos
Erich Elsen
...
Boris Ginsburg
Michael Houston
Oleksii Kuchaiev
Ganesh Venkatesh
Hao Wu
149
1,792
0
10 Oct 2017
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
65
296
0
29 Sep 2017
Computation Error Analysis of Block Floating Point Arithmetic Oriented Convolution Neural Network Accelerator Design
Zhourui Song
Zhenyu Liu
Dongsheng Wang
45
42
0
22 Sep 2017
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
49
101
0
16 Jun 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
282
5,812
0
14 Jun 2017
Training Quantized Nets: A Deeper Understanding
Hao Li
Soham De
Zheng Xu
Christoph Studer
H. Samet
Tom Goldstein
MQ
53
210
0
07 Jun 2017
Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan
Chunyuan Li
Changyou Chen
Yunchen Pu
Qinliang Su
Lawrence Carin
BDL
UQCV
83
41
0
23 Nov 2016
Stochastic Gradient MCMC with Stale Gradients
Changyou Chen
Nan Ding
Chunyuan Li
Yizhe Zhang
Lawrence Carin
BDL
62
23
0
21 Oct 2016
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
Shuchang Zhou
Yuxin Wu
Zekun Ni
Xinyu Zhou
He Wen
Yuheng Zou
MQ
112
2,085
0
20 Jun 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.1K
193,426
0
10 Dec 2015
Fixed Point Quantization of Deep Convolutional Networks
D. Lin
S. Talathi
V. Annapureddy
MQ
90
814
0
19 Nov 2015
BinaryConnect: Training Deep Neural Networks with binary weights during propagations
Matthieu Courbariaux
Yoshua Bengio
J. David
MQ
200
2,984
0
02 Nov 2015
A Complete Recipe for Stochastic Gradient MCMC
Yian Ma
Tianqi Chen
E. Fox
BDL
SyDa
60
486
0
15 Jun 2015
Bayesian Dark Knowledge
Masashi Sugiyama
Vivek Rathod
R. Garnett
Max Welling
BDL
UQCV
74
258
0
14 Jun 2015
Training Binary Multilayer Neural Networks for Image Classification using Expectation Backpropagation
Zhiyong Cheng
Daniel Soudry
Zexi Mao
Zhenzhong Lan
MQ
67
52
0
12 Mar 2015
Deep Learning with Limited Numerical Precision
Suyog Gupta
A. Agrawal
K. Gopalakrishnan
P. Narayanan
HAI
187
2,046
0
09 Feb 2015
Stochastic Gradient Hamiltonian Monte Carlo
Tianqi Chen
E. Fox
Carlos Guestrin
BDL
104
908
0
17 Feb 2014
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,276
0
09 Jun 2012
1