Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.08998
Cited By
v1
v2 (latest)
A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting
17 June 2022
Georgia Papacharalampous
Hristos Tyralis
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting"
32 / 32 papers shown
Title
Deep Huber quantile regression networks
Hristos Tyralis
Georgia Papacharalampous
N. Dogulu
Kwok-Pan Chun
UQCV
114
2
0
17 Jun 2023
Criteria for Classifying Forecasting Methods
Tim Januschowski
Jan Gasthaus
Bernie Wang
David Salinas
Valentin Flunkert
Michael Bohlke-Schneider
Laurent Callot
AI4TS
68
178
0
07 Dec 2022
Forecast combinations: an over 50-year review
Xiaoqian Wang
Rob J. Hyndman
Feng Li
Yanfei Kang
AI4TS
60
144
0
09 May 2022
Massive feature extraction for explaining and foretelling hydroclimatic time series forecastability at the global scale
Georgia Papacharalampous
Hristos Tyralis
I. Pechlivanidis
S. Grimaldi
E. Volpi
AI4TS
39
12
0
25 Jul 2021
Forecasting: theory and practice
F. Petropoulos
D. Apiletti
Vassilios Assimakopoulos
M. Z. Babai
Devon K. Barrow
...
J. Arenas
Xiaoqian Wang
R. L. Winkler
Alisa Yusupova
F. Ziel
AI4TS
96
371
0
04 Dec 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
343
1,927
0
12 Nov 2020
Principles and Practice of Explainable Machine Learning
Vaishak Belle
I. Papantonis
FaML
67
449
0
18 Sep 2020
Kaggle forecasting competitions: An overlooked learning opportunity
Casper Solheim Bojer
Jens Peder Meldgaard
AI4TS
74
207
0
16 Sep 2020
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TS
AI4CE
94
1,234
0
28 Apr 2020
Boosting algorithms in energy research: A systematic review
Hristos Tyralis
Georgia Papacharalampous
84
45
0
01 Apr 2020
Hydrological time series forecasting using simple combinations: Big data testing and investigations on one-year ahead river flow predictability
Georgia Papacharalampous
Hristos Tyralis
AI4TS
33
36
0
02 Jan 2020
NGBoost: Natural Gradient Boosting for Probabilistic Prediction
Tony Duan
Anand Avati
D. Ding
Khanh K. Thai
S. Basu
A. Ng
Alejandro Schuler
BDL
34
303
0
08 Oct 2019
Recurrent Neural Networks for Time Series Forecasting: Current Status and Future Directions
Hansika Hewamalage
Christoph Bergmeir
Kasun Bandara
AI4TS
81
892
0
02 Sep 2019
Marginally-calibrated deep distributional regression
Nadja Klein
David J. Nott
M. Smith
UQCV
57
14
0
26 Aug 2019
Explainable Machine Learning for Scientific Insights and Discoveries
R. Roscher
B. Bohn
Marco F. Duarte
Jochen Garcke
XAI
89
672
0
21 May 2019
Distribution Calibration for Regression
Hao Song
Tom Diethe
Meelis Kull
Peter A. Flach
UQCV
184
112
0
15 May 2019
Why scoring functions cannot assess tail properties
Jonas R. Brehmer
K. Strokorb
30
20
0
10 May 2019
Deep Distribution Regression
Rui-Bing Li
H. Bondell
Brian J. Reich
UQCV
60
33
0
14 Mar 2019
GRATIS: GeneRAting TIme Series with diverse and controllable characteristics
Yanfei Kang
Rob J. Hyndman
Feng Li
AI4TS
65
106
0
07 Mar 2019
Local Linear Forests
R. Friedberg
J. Tibshirani
Susan Athey
Stefan Wager
135
92
0
30 Jul 2018
A trans-disciplinary review of deep learning research for water resources scientists
Chaopeng Shen
AI4CE
194
690
0
06 Dec 2017
Feature-based time-series analysis
Ben D. Fulcher
AI4TS
86
131
0
23 Sep 2017
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
David Salinas
Valentin Flunkert
Jan Gasthaus
AI4TS
UQCV
BDL
85
2,127
0
13 Apr 2017
Using stacking to average Bayesian predictive distributions
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
79
340
0
06 Apr 2017
Generalized Random Forests
Susan Athey
J. Tibshirani
Stefan Wager
327
1,366
0
05 Oct 2016
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
814
39,062
0
09 Mar 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
854
9,346
0
06 Jun 2015
Highly comparative feature-based time-series classification
Ben D. Fulcher
N. Jones
AI4TS
54
316
0
15 Jan 2014
Highly comparative time-series analysis: The empirical structure of time series and their methods
Ben D. Fulcher
Max A. Little
N. Jones
AI4TS
102
343
0
03 Apr 2013
A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition
Souhaib Ben Taieb
Gianluca Bontempi
A. Atiya
A. Sorjamaa
AI4TS
104
595
0
16 Aug 2011
Making and Evaluating Point Forecasts
T. Gneiting
107
1,055
0
04 Dec 2009
BART: Bayesian additive regression trees
H. Chipman
E. George
R. McCulloch
156
1,795
0
19 Jun 2008
1