ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.08529
  4. Cited By
Accelerating Shapley Explanation via Contributive Cooperator Selection
v1v2 (latest)

Accelerating Shapley Explanation via Contributive Cooperator Selection

17 June 2022
Guanchu Wang
Yu-Neng Chuang
Mengnan Du
Fan Yang
Quan-Gen Zhou
Pushkar Tripathi
Xuanting Cai
Xia Hu
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Accelerating Shapley Explanation via Contributive Cooperator Selection"

18 / 18 papers shown
Title
Efficient XAI Techniques: A Taxonomic Survey
Efficient XAI Techniques: A Taxonomic Survey
Yu-Neng Chuang
Guanchu Wang
Fan Yang
Zirui Liu
Xuanting Cai
Mengnan Du
Xia Hu
49
34
0
07 Feb 2023
Synthetic Benchmarks for Scientific Research in Explainable Machine
  Learning
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
Willie Neiswanger
105
66
0
23 Jun 2021
Model-Based Counterfactual Synthesizer for Interpretation
Model-Based Counterfactual Synthesizer for Interpretation
Fan Yang
Sahan Suresh Alva
Jiahao Chen
X. Hu
40
31
0
16 Jun 2021
Sampling Permutations for Shapley Value Estimation
Sampling Permutations for Shapley Value Estimation
Rory Mitchell
Joshua N. Cooper
E. Frank
G. Holmes
59
120
0
25 Apr 2021
Shapley Explanation Networks
Shapley Explanation Networks
Rui Wang
Xiaoqian Wang
David I. Inouye
TDIFAtt
60
45
0
06 Apr 2021
Improving KernelSHAP: Practical Shapley Value Estimation via Linear
  Regression
Improving KernelSHAP: Practical Shapley Value Estimation via Linear Regression
Ian Covert
Su-In Lee
FAtt
56
171
0
02 Dec 2020
Feature Importance Ranking for Deep Learning
Feature Importance Ranking for Deep Learning
Maksymilian Wojtas
Ke Chen
186
117
0
18 Oct 2020
On the Tractability of SHAP Explanations
On the Tractability of SHAP Explanations
Guy Van den Broeck
A. Lykov
Maximilian Schleich
Dan Suciu
FAttTDI
66
276
0
18 Sep 2020
Captum: A unified and generic model interpretability library for PyTorch
Captum: A unified and generic model interpretability library for PyTorch
Narine Kokhlikyan
Vivek Miglani
Miguel Martin
Edward Wang
B. Alsallakh
...
Alexander Melnikov
Natalia Kliushkina
Carlos Araya
Siqi Yan
Orion Reblitz-Richardson
FAtt
144
846
0
16 Sep 2020
Explaining Deep Neural Networks with a Polynomial Time Algorithm for
  Shapley Values Approximation
Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation
Marco Ancona
Cengiz Öztireli
Markus Gross
FAttTDI
99
226
0
26 Mar 2019
Towards Efficient Data Valuation Based on the Shapley Value
Towards Efficient Data Valuation Based on the Shapley Value
R. Jia
David Dao
Wei Ping
F. Hubis
Nicholas Hynes
Nezihe Merve Gürel
Yue Liu
Ce Zhang
Basel Alomair
C. Spanos
TDI
72
421
0
27 Feb 2019
L-Shapley and C-Shapley: Efficient Model Interpretation for Structured
  Data
L-Shapley and C-Shapley: Efficient Model Interpretation for Structured Data
Jianbo Chen
Le Song
Martin J. Wainwright
Michael I. Jordan
FAttTDI
115
216
0
08 Aug 2018
Antithetic and Monte Carlo kernel estimators for partial rankings
Antithetic and Monte Carlo kernel estimators for partial rankings
Maria Lomeli
Mark Rowland
Arthur Gretton
Zoubin Ghahramani
42
19
0
01 Jul 2018
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
122
2,650
0
13 Mar 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OODFAtt
191
6,015
0
04 Mar 2017
European Union regulations on algorithmic decision-making and a "right
  to explanation"
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaMLAILaw
67
1,902
0
28 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,027
0
16 Feb 2016
1