Papers
Communities
Events
Blog
Pricing
Search
Sign up
Login
Open menu
Home
Papers
2206.06796
Cited By
Open-Ended Learning Strategies for Learning Complex Locomotion Skills
14 June 2022
Fangqin Zhou
Joaquin Vanschoren
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Open-Ended Learning Strategies for Learning Complex Locomotion Skills"
8 / 8 papers shown
Title
CARL: Controllable Agent with Reinforcement Learning for Quadruped Locomotion
Ying-Sheng Luo
Jonathan Hans Soeseno
Trista Pei-chun Chen
Wei-Chao Chen
56
15
0
07 May 2020
Enhanced POET: Open-Ended Reinforcement Learning through Unbounded Invention of Learning Challenges and their Solutions
Rui Wang
Joel Lehman
Aditya Rawal
Jiale Zhi
Yulun Li
Jeff Clune
Kenneth O. Stanley
84
129
0
19 Mar 2020
Learning Generalizable Locomotion Skills with Hierarchical Reinforcement Learning
Tianyu Li
Nathan Lambert
Roberto Calandra
Franziska Meier
Akshara Rai
73
40
0
26 Sep 2019
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
317
8,406
0
04 Jan 2018
Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
Edoardo Conti
Vashisht Madhavan
F. Such
Joel Lehman
Kenneth O. Stanley
Jeff Clune
80
348
0
18 Dec 2017
Emergence of Locomotion Behaviours in Rich Environments
N. Heess
TB Dhruva
S. Sriram
Jay Lemmon
J. Merel
...
Tom Erez
Ziyun Wang
S. M. Ali Eslami
Martin Riedmiller
David Silver
202
938
0
07 Jul 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
115
1,544
0
10 Mar 2017
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
223
5,086
0
05 Jun 2016
1