ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.06715
39
5

Semi-signed prioritized neural fitting for surface reconstruction from unoriented point clouds

14 June 2022
Runsong Zhu
Di Kang
Ka-Hei Hui
Yue Qian
Shi Qiu
Zhen Dong
Linchao Bao
Pheng-Ann Heng
Chi-Wing Fu
    3DPC
ArXivPDFHTML
Abstract

Reconstructing 3D geometry from \emph{unoriented} point clouds can benefit many downstream tasks. Recent shape modeling methods mostly adopt implicit neural representation to fit a signed distance field (SDF) and optimize the network by \emph{unsigned} supervision. However, these methods occasionally have difficulty in finding the coarse shape for complicated objects, especially suffering from the ``ghost'' surfaces (\ie, fake surfaces that should not exist). To guide the network quickly fit the coarse shape, we propose to utilize the signed supervision in regions that are obviously outside the object and can be easily determined, resulting in our semi-signed supervision. To better recover high-fidelity details, a novel importance sampling based on tracked region losses and a progressive positional encoding (PE) prioritize the optimization towards underfitting and complicated regions. Specifically, we voxelize and partition the object space into \emph{sign-known} and \emph{sign-uncertain} regions, in which different supervisions are applied. Besides, we adaptively adjust the sampling rate of each voxel according to the tracked reconstruction loss, so that the network can focus more on the complicated under-fitting regions. To this end, we propose our semi-signed prioritized (SSP) neural fitting, and conduct extensive experiments to demonstrate that SSP achieves state-of-the-art performance on multiple datasets including the ABC subset and various challenging data. The code will be released upon the publication.

View on arXiv
Comments on this paper