Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.05880
Cited By
Confident Sinkhorn Allocation for Pseudo-Labeling
13 June 2022
Vu-Linh Nguyen
Hisham Husain
S. Farfade
Anton Van Den Hengel
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Confident Sinkhorn Allocation for Pseudo-Labeling"
8 / 8 papers shown
Title
You can't handle the (dirty) truth: Data-centric insights improve pseudo-labeling
Nabeel Seedat
Nicolas Huynh
F. Imrie
Mihaela van der Schaar
46
1
0
19 Jun 2024
CSOT: Curriculum and Structure-Aware Optimal Transport for Learning with Noisy Labels
Wanxing Chang
Ye-ling Shi
Jingya Wang
OT
38
12
0
11 Dec 2023
FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling
Bowen Zhang
Yidong Wang
Wenxin Hou
Hao Wu
Jindong Wang
Manabu Okumura
T. Shinozaki
AAML
255
863
0
15 Oct 2021
Label Propagation Through Optimal Transport
Mourad El Hamri
Younès Bennani
Issam Falih
OT
32
4
0
01 Oct 2021
Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed Self-Training
Kai Sheng Tai
Peter Bailis
Gregory Valiant
OT
47
43
0
17 Feb 2021
In Defense of Pseudo-Labeling: An Uncertainty-Aware Pseudo-label Selection Framework for Semi-Supervised Learning
Mamshad Nayeem Rizve
Kevin Duarte
Yogesh S Rawat
M. Shah
241
509
0
15 Jan 2021
Second Order PAC-Bayesian Bounds for the Weighted Majority Vote
A. Masegosa
S. Lorenzen
Christian Igel
Yevgeny Seldin
36
40
0
01 Jul 2020
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1