ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.04789
  4. Cited By
Comprehensive Fair Meta-learned Recommender System

Comprehensive Fair Meta-learned Recommender System

9 June 2022
Tianxin Wei
Jingrui He
    FedMLFaMLOffRL
ArXiv (abs)PDFHTML

Papers citing "Comprehensive Fair Meta-learned Recommender System"

16 / 16 papers shown
Title
Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
Zhining Liu
Ze Yang
Xiao Lin
Ruizhong Qiu
Tianxin Wei
Yada Zhu
Hendrik Hamann
Jingrui He
Hanghang Tong
AI4TS
85
0
0
24 May 2025
Fairness-Aware Online Meta-learning
Fairness-Aware Online Meta-learning
Chengli Zhao
Feng Chen
B. Thuraisingham
FaML
64
35
0
21 Aug 2021
Personalized Counterfactual Fairness in Recommendation
Personalized Counterfactual Fairness in Recommendation
Yunqi Li
Hanxiong Chen
Shuyuan Xu
Yingqiang Ge
Yongfeng Zhang
FaMLOffRL
82
144
0
20 May 2021
User-oriented Fairness in Recommendation
User-oriented Fairness in Recommendation
Yunqi Li
H. Chen
Zuohui Fu
Yingqiang Ge
Yongfeng Zhang
FaML
156
237
0
21 Apr 2021
Fair Meta-Learning For Few-Shot Classification
Fair Meta-Learning For Few-Shot Classification
Chengli Zhao
Changbin Li
Jincheng Li
Feng Chen
FaML
55
26
0
23 Sep 2020
MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation
MAMO: Memory-Augmented Meta-Optimization for Cold-start Recommendation
Manqing Dong
Feng Yuan
Lina Yao
Xiwei Xu
Liming Zhu
CLL
51
167
0
07 Jul 2020
Privacy-Aware Recommendation with Private-Attribute Protection using
  Adversarial Learning
Privacy-Aware Recommendation with Private-Attribute Protection using Adversarial Learning
Ghazaleh Beigi
Ahmadreza Mosallanezhad
Ruocheng Guo
Hamidreza Alvari
A. Nou
Huan Liu
SILM
72
69
0
22 Nov 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
111
55
0
24 Aug 2019
MeLU: Meta-Learned User Preference Estimator for Cold-Start
  Recommendation
MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation
Hoyeop Lee
Jinbae Im
Seongwon Jang
Hyunsouk Cho
Sehee Chung
45
364
0
31 Jul 2019
Sequential Scenario-Specific Meta Learner for Online Recommendation
Sequential Scenario-Specific Meta Learner for Online Recommendation
Zhengxiao Du
Xiaowei Wang
Hongxia Yang
Jingren Zhou
Jie Tang
OffRLLRMCLL
81
118
0
02 Jun 2019
A Style-Based Generator Architecture for Generative Adversarial Networks
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
593
10,561
0
12 Dec 2018
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Graph Convolutional Neural Networks for Web-Scale Recommender Systems
Rex Ying
Ruining He
Kaifeng Chen
Pong Eksombatchai
William L. Hamilton
J. Leskovec
GNNBDL
263
3,549
0
06 Jun 2018
Graph Convolutional Matrix Completion
Graph Convolutional Matrix Completion
Rianne van den Berg
Thomas Kipf
Max Welling
GNN
117
1,259
0
07 Jun 2017
Beyond Parity: Fairness Objectives for Collaborative Filtering
Beyond Parity: Fairness Objectives for Collaborative Filtering
Sirui Yao
Bert Huang
FaML
40
368
0
24 May 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
825
11,937
0
09 Mar 2017
Wide & Deep Learning for Recommender Systems
Wide & Deep Learning for Recommender Systems
Heng-Tze Cheng
L. Koc
Jeremiah Harmsen
T. Shaked
Tushar Chandra
...
Zakaria Haque
Lichan Hong
Vihan Jain
Xiaobing Liu
Hemal Shah
HAIVLM
187
3,662
0
24 Jun 2016
1