ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.04723
  4. Cited By
On the Unreasonable Effectiveness of Federated Averaging with
  Heterogeneous Data

On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data

9 June 2022
Jianyu Wang
Rudrajit Das
Gauri Joshi
Satyen Kale
Zheng Xu
Tong Zhang
    FedML
ArXiv (abs)PDFHTML

Papers citing "On the Unreasonable Effectiveness of Federated Averaging with Heterogeneous Data"

33 / 33 papers shown
Title
Heterogeneity Matters even More in Distributed Learning: Study from Generalization Perspective
Heterogeneity Matters even More in Distributed Learning: Study from Generalization Perspective
Masoud Kavian
Romain Chor
Milad Sefidgaran
Abdellatif Zaidi
FedML
102
1
0
03 Mar 2025
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLTFedML
143
1
0
25 Nov 2024
Sharp Bounds for Federated Averaging (Local SGD) and Continuous
  Perspective
Sharp Bounds for Federated Averaging (Local SGD) and Continuous Perspective
Margalit Glasgow
Honglin Yuan
Tengyu Ma
FedML
55
45
0
05 Nov 2021
Iterated Vector Fields and Conservatism, with Applications to Federated
  Learning
Iterated Vector Fields and Conservatism, with Applications to Federated Learning
Zachary B. Charles
Keith Rush
65
6
0
08 Sep 2021
A Field Guide to Federated Optimization
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
273
421
0
14 Jul 2021
On Large-Cohort Training for Federated Learning
On Large-Cohort Training for Federated Learning
Zachary B. Charles
Zachary Garrett
Zhouyuan Huo
Sergei Shmulyian
Virginia Smith
FedML
66
112
0
15 Jun 2021
Convergence and Accuracy Trade-Offs in Federated Learning and
  Meta-Learning
Convergence and Accuracy Trade-Offs in Federated Learning and Meta-Learning
Zachary B. Charles
Jakub Konecný
FedML
98
64
0
08 Mar 2021
Achieving Linear Speedup with Partial Worker Participation in Non-IID
  Federated Learning
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
69
261
0
27 Jan 2021
Tackling the Objective Inconsistency Problem in Heterogeneous Federated
  Optimization
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMeFedML
70
1,348
0
15 Jul 2020
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
121
204
0
08 Jun 2020
From Local SGD to Local Fixed-Point Methods for Federated Learning
From Local SGD to Local Fixed-Point Methods for Federated Learning
Grigory Malinovsky
D. Kovalev
Elnur Gasanov
Laurent Condat
Peter Richtárik
FedML
126
117
0
03 Apr 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
85
514
0
23 Mar 2020
Adaptive Federated Optimization
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
183
1,452
0
29 Feb 2020
Is Local SGD Better than Minibatch SGD?
Is Local SGD Better than Minibatch SGD?
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
74
254
0
18 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedMLAI4CE
268
6,285
0
10 Dec 2019
On the Convergence of Local Descent Methods in Federated Learning
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
87
274
0
31 Oct 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
67
347
0
14 Oct 2019
SlowMo: Improving Communication-Efficient Distributed SGD with Slow
  Momentum
SlowMo: Improving Communication-Efficient Distributed SGD with Slow Momentum
Jianyu Wang
Vinayak Tantia
Nicolas Ballas
Michael G. Rabbat
76
201
0
01 Oct 2019
Measuring the Effects of Non-Identical Data Distribution for Federated
  Visual Classification
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
145
1,163
0
13 Sep 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
76
435
0
10 Sep 2019
Unified Optimal Analysis of the (Stochastic) Gradient Method
Unified Optimal Analysis of the (Stochastic) Gradient Method
Sebastian U. Stich
54
113
0
09 Jul 2019
On the Convergence of FedAvg on Non-IID Data
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
164
2,348
0
04 Jul 2019
On the Linear Speedup Analysis of Communication Efficient Momentum SGD
  for Distributed Non-Convex Optimization
On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization
Hao Yu
Rong Jin
Sen Yang
FedML
94
387
0
09 May 2019
On the Convergence of Adam and Beyond
On the Convergence of Adam and Beyond
Sashank J. Reddi
Satyen Kale
Surinder Kumar
106
2,505
0
19 Apr 2019
SGD: General Analysis and Improved Rates
SGD: General Analysis and Improved Rates
Robert Mansel Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
88
380
0
27 Jan 2019
Federated Optimization in Heterogeneous Networks
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
190
5,220
0
14 Dec 2018
Stochastic Gradient Push for Distributed Deep Learning
Stochastic Gradient Push for Distributed Deep Learning
Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael G. Rabbat
91
348
0
27 Nov 2018
Cooperative SGD: A unified Framework for the Design and Analysis of
  Communication-Efficient SGD Algorithms
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
172
349
0
22 Aug 2018
Parallel Restarted SGD with Faster Convergence and Less Communication:
  Demystifying Why Model Averaging Works for Deep Learning
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMeFedML
79
608
0
17 Jul 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
187
1,069
0
24 May 2018
On the convergence properties of a $K$-step averaging stochastic
  gradient descent algorithm for nonconvex optimization
On the convergence properties of a KKK-step averaging stochastic gradient descent algorithm for nonconvex optimization
Fan Zhou
Guojing Cong
149
236
0
03 Aug 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case
  Study for Decentralized Parallel Stochastic Gradient Descent
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
50
1,235
0
25 May 2017
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
408
17,593
0
17 Feb 2016
1