ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.04500
  4. Cited By
Unlearning Protected User Attributes in Recommendations with Adversarial
  Training

Unlearning Protected User Attributes in Recommendations with Adversarial Training

9 June 2022
Christian Ganhor
D. Penz
Navid Rekabsaz
Oleg Lesota
Markus Schedl
    FaMLMU
ArXiv (abs)PDFHTML

Papers citing "Unlearning Protected User Attributes in Recommendations with Adversarial Training"

17 / 17 papers shown
Title
RAID: An In-Training Defense against Attribute Inference Attacks in Recommender Systems
RAID: An In-Training Defense against Attribute Inference Attacks in Recommender Systems
Xiaohua Feng
Yuyuan Li
Fengyuan Yu
Ke Xiong
Junjie Fang
Lulu Zhang
Tianyu Du
Chaochao Chen
AAML
98
0
0
15 Apr 2025
FROG: Fair Removal on Graphs
FROG: Fair Removal on Graphs
Zhe Chen
Jiali Cheng
Gabriele Tolomei
Sijia Liu
Hadi Amiri
Yu Wang
Kaushiki Nag
Lu Lin
MU
106
2
0
23 Mar 2025
Simultaneous Unlearning of Multiple Protected User Attributes From
  Variational Autoencoder Recommenders Using Adversarial Training
Simultaneous Unlearning of Multiple Protected User Attributes From Variational Autoencoder Recommenders Using Adversarial Training
Gustavo Escobedo
Christian Ganhor
Stefan Brandl
Mirjam Augstein
Markus Schedl
MU
41
2
0
28 Oct 2024
A Deep Dive into Fairness, Bias, Threats, and Privacy in Recommender
  Systems: Insights and Future Research
A Deep Dive into Fairness, Bias, Threats, and Privacy in Recommender Systems: Insights and Future Research
Falguni Roy
Xiaofeng Ding
K. -K. R. Choo
Pan Zhou
FaML
48
0
0
19 Sep 2024
CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper
  Influence
CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence
Chaochao Chen
Jiaming Zhang
Yizhao Zhang
Li Zhang
Lingjuan Lyu
Yuyuan Li
Biao Gong
Chenggang Yan
CMLELMMU
95
3
0
26 Aug 2024
Towards Trustworthy AI: A Review of Ethical and Robust Large Language
  Models
Towards Trustworthy AI: A Review of Ethical and Robust Large Language Models
Meftahul Ferdaus
Mahdi Abdelguerfi
Elias Ioup
Kendall N. Niles
Ken Pathak
Steve Sloan
128
14
0
01 Jun 2024
Machine Unlearning: A Comprehensive Survey
Machine Unlearning: A Comprehensive Survey
Weiqi Wang
Zhiyi Tian
Chenhan Zhang
Shui Yu
MUAILaw
88
18
0
13 May 2024
Towards Efficient and Effective Unlearning of Large Language Models for
  Recommendation
Towards Efficient and Effective Unlearning of Large Language Models for Recommendation
Hangyu Wang
Jianghao Lin
Bo Chen
Yang Yang
Ruiming Tang
Weinan Zhang
Yong Yu
MU
105
11
0
06 Mar 2024
Effective Controllable Bias Mitigation for Classification and Retrieval
  using Gate Adapters
Effective Controllable Bias Mitigation for Classification and Retrieval using Gate Adapters
Shahed Masoudian
Cornelia Volaucnik
Markus Schedl
Navid Rekabsaz
73
6
0
29 Jan 2024
Machine Unlearning for Recommendation Systems: An Insight
Machine Unlearning for Recommendation Systems: An Insight
Bhavika Sachdeva
Harshita Rathee
Sristi
Arun Sharma
Witold Wydmañski
MU
141
5
0
17 Jan 2024
Machine unlearning through fine-grained model parameters perturbation
Machine unlearning through fine-grained model parameters perturbation
Zhiwei Zuo
Zhuo Tang
KenLi Li
Anwitaman Datta
AAMLMU
135
0
0
09 Jan 2024
Making Users Indistinguishable: Attribute-wise Unlearning in Recommender
  Systems
Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems
Yuyuan Li
Chaochao Chen
Xiaolin Zheng
Yizhao Zhang
Zhongxuan Han
Dan Meng
Jun Wang
MU
79
23
0
06 Oct 2023
Exploring the Landscape of Machine Unlearning: A Comprehensive Survey
  and Taxonomy
Exploring the Landscape of Machine Unlearning: A Comprehensive Survey and Taxonomy
T. Shaik
Xiaohui Tao
Haoran Xie
Lin Li
Xiaofeng Zhu
Qingyuan Li
MU
125
30
0
10 May 2023
Parameter-efficient Modularised Bias Mitigation via AdapterFusion
Parameter-efficient Modularised Bias Mitigation via AdapterFusion
Deepak Kumar
Oleg Lesota
George Zerveas
Daniel Cohen
Carsten Eickhoff
Markus Schedl
Navid Rekabsaz
MoMeKELM
75
28
0
13 Feb 2023
Efficient Bi-Level Optimization for Recommendation Denoising
Efficient Bi-Level Optimization for Recommendation Denoising
Zongwei Wang
Min Gao
Wentao Li
Junliang Yu
Linxin Guo
Hongzhi Yin
89
31
0
19 Oct 2022
Modular and On-demand Bias Mitigation with Attribute-Removal Subnetworks
Modular and On-demand Bias Mitigation with Attribute-Removal Subnetworks
Lukas Hauzenberger
Shahed Masoudian
Deepak Kumar
Markus Schedl
Navid Rekabsaz
82
18
0
30 May 2022
Making Recommender Systems Forget: Learning and Unlearning for Erasable
  Recommendation
Making Recommender Systems Forget: Learning and Unlearning for Erasable Recommendation
Yuyuan Li
Xiaolin Zheng
Chaochao Chen
Junlin Liu
MU
92
47
0
22 Mar 2022
1