ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.04479
  4. Cited By
BSM loss: A superior way in modeling aleatory uncertainty of
  fine_grained classification

BSM loss: A superior way in modeling aleatory uncertainty of fine_grained classification

9 June 2022
Shuang Ge
Kehong Yuan
Maokun Han
Desheng Sun
Huabin Zhang
Qiongyu Ye
    UQCV
ArXivPDFHTML

Papers citing "BSM loss: A superior way in modeling aleatory uncertainty of fine_grained classification"

2 / 2 papers shown
Title
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,675
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1