Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.02792
Cited By
FIFA: Making Fairness More Generalizable in Classifiers Trained on Imbalanced Data
6 June 2022
Zhun Deng
Jiayao Zhang
Linjun Zhang
Ting Ye
Yates Coley
Weijie J. Su
James Zou
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"FIFA: Making Fairness More Generalizable in Classifiers Trained on Imbalanced Data"
30 / 30 papers shown
Title
Properties of fairness measures in the context of varying class imbalance and protected group ratios
D. Brzezinski
Julia Stachowiak
Jerzy Stefanowski
Izabela Szczech
R. Susmaga
Sofya Aksenyuk
Uladzimir Ivashka
Oleksandr Yasinskyi
241
6
0
13 Nov 2024
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
207
1
0
13 Mar 2024
HappyMap: A Generalized Multi-calibration Method
Zhun Deng
Cynthia Dwork
Linjun Zhang
228
19
0
08 Mar 2023
Reinforcement Learning with Stepwise Fairness Constraints
Zhun Deng
He Sun
Zhiwei Steven Wu
Linjun Zhang
David C. Parkes
FaML
OffRL
73
11
0
08 Nov 2022
An Unconstrained Layer-Peeled Perspective on Neural Collapse
Wenlong Ji
Yiping Lu
Yiliang Zhang
Zhun Deng
Weijie J. Su
188
87
0
06 Oct 2021
The Power of Contrast for Feature Learning: A Theoretical Analysis
Wenlong Ji
Zhun Deng
Ryumei Nakada
James Zou
Linjun Zhang
SSL
115
53
0
06 Oct 2021
Adversarial Training Helps Transfer Learning via Better Representations
Zhun Deng
Linjun Zhang
Kailas Vodrahalli
Kenji Kawaguchi
James Zou
GAN
87
54
0
18 Jun 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
103
96
0
02 Mar 2021
Technical Challenges for Training Fair Neural Networks
Valeriia Cherepanova
V. Nanda
Micah Goldblum
John P. Dickerson
Tom Goldstein
FaML
54
22
0
12 Feb 2021
Minimax Pareto Fairness: A Multi Objective Perspective
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
FaML
79
197
0
03 Nov 2020
Towards Understanding the Dynamics of the First-Order Adversaries
Zhun Deng
Hangfeng He
Jiaoyang Huang
Weijie J. Su
AAML
44
11
0
20 Oct 2020
How Does Mixup Help With Robustness and Generalization?
Linjun Zhang
Zhun Deng
Kenji Kawaguchi
Amirata Ghorbani
James Zou
AAML
96
252
0
09 Oct 2020
Why resampling outperforms reweighting for correcting sampling bias with stochastic gradients
Jing An
Lexing Ying
Yuhua Zhu
110
40
0
28 Sep 2020
Fairness without Demographics through Adversarially Reweighted Learning
Preethi Lahoti
Alex Beutel
Jilin Chen
Kang Lee
Flavien Prost
Nithum Thain
Xuezhi Wang
Ed H. Chi
FaML
131
338
0
23 Jun 2020
Representation via Representations: Domain Generalization via Adversarially Learned Invariant Representations
Zhun Deng
Frances Ding
Cynthia Dwork
Rachel Hong
Giovanni Parmigiani
Prasad Patil
Pragya Sur
OOD
FaML
61
30
0
20 Jun 2020
Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
Zhun Deng
Linjun Zhang
Amirata Ghorbani
James Zou
78
32
0
15 Jun 2020
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
195
383
0
09 May 2020
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
Kaidi Cao
Colin Wei
Adrien Gaidon
Nikos Arechiga
Tengyu Ma
131
1,609
0
18 Jun 2019
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
255
773
0
13 Dec 2018
What is the Effect of Importance Weighting in Deep Learning?
Jonathon Byrd
Zachary Chase Lipton
108
465
0
08 Dec 2018
Adversarially Robust Generalization Requires More Data
Ludwig Schmidt
Shibani Santurkar
Dimitris Tsipras
Kunal Talwar
Aleksander Madry
OOD
AAML
164
797
0
30 Apr 2018
A Reductions Approach to Fair Classification
Alekh Agarwal
A. Beygelzimer
Miroslav Dudík
John Langford
Hanna M. Wallach
FaML
230
1,105
0
06 Mar 2018
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
78
445
0
23 Feb 2018
Learning Adversarially Fair and Transferable Representations
David Madras
Elliot Creager
T. Pitassi
R. Zemel
FaML
384
685
0
17 Feb 2018
Active Bias: Training More Accurate Neural Networks by Emphasizing High Variance Samples
Haw-Shiuan Chang
Erik Learned-Miller
Andrew McCallum
92
354
0
24 Apr 2017
Large-Margin Softmax Loss for Convolutional Neural Networks
Weiyang Liu
Yandong Wen
Zhiding Yu
Meng Yang
CVBM
84
1,457
0
07 Dec 2016
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
351
4,636
0
10 Nov 2016
Equality of Opportunity in Supervised Learning
Moritz Hardt
Eric Price
Nathan Srebro
FaML
236
4,341
0
07 Oct 2016
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
208
1,996
0
11 Dec 2014
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
253
8,429
0
28 Nov 2014
1