ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.02653
  4. Cited By
Abstraction-Refinement for Hierarchical Probabilistic Models

Abstraction-Refinement for Hierarchical Probabilistic Models

6 June 2022
Sebastian Junges
M. Spaan
ArXivPDFHTML

Papers citing "Abstraction-Refinement for Hierarchical Probabilistic Models"

6 / 6 papers shown
Title
Fine-Tuning the Odds in Bayesian Networks
Fine-Tuning the Odds in Bayesian Networks
Bahar Salmani
J. Katoen
114
9
0
29 May 2021
Fast Parametric Model Checking through Model Fragmentation
Fast Parametric Model Checking through Model Fragmentation
Xinwei Fang
R. Calinescu
Simos Gerasimou
Faisal Alhwikem
33
19
0
02 Feb 2021
Inductive Synthesis for Probabilistic Programs Reaches New Horizons
Inductive Synthesis for Probabilistic Programs Reaches New Horizons
Roman Andriushchenko
Milan Ceska
Sebastian Junges
J. Katoen
10
16
0
29 Jan 2021
Robust Finite-State Controllers for Uncertain POMDPs
Robust Finite-State Controllers for Uncertain POMDPs
Murat Cubuktepe
N. Jansen
Sebastian Junges
Ahmadreza Marandi
Marnix Suilen
Ufuk Topcu
37
28
0
24 Sep 2020
Of Cores: A Partial-Exploration Framework for Markov Decision Processes
Of Cores: A Partial-Exploration Framework for Markov Decision Processes
Jan Křetínský
Tobias Meggendorfer
19
21
0
17 Jun 2019
Hierarchical Solution of Markov Decision Processes using Macro-actions
Hierarchical Solution of Markov Decision Processes using Macro-actions
Milos Hauskrecht
Nicolas Meuleau
L. Kaelbling
T. Dean
Craig Boutilier
88
329
0
30 Jan 2013
1