ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01816
  4. Cited By
From $t$-SNE to UMAP with contrastive learning

From ttt-SNE to UMAP with contrastive learning

3 June 2022
Sebastian Damrich
Jan Niklas Böhm
Fred Hamprecht
D. Kobak
    SSL
ArXivPDFHTML

Papers citing "From $t$-SNE to UMAP with contrastive learning"

11 / 11 papers shown
Title
Node Embeddings via Neighbor Embeddings
Node Embeddings via Neighbor Embeddings
Jan Niklas Böhm
Marius Keute
Alica Guzmán
Sebastian Damrich
Andrew Draganov
D. Kobak
GNN
57
0
0
31 Mar 2025
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Mohammad Tariqul Islam
Jason W. Fleischer
157
0
0
12 Mar 2025
Random Forest Autoencoders for Guided Representation Learning
Random Forest Autoencoders for Guided Representation Learning
Adrien Aumon
Shuang Ni
Myriam Lizotte
Guy Wolf
Kevin R. Moon
Jake S. Rhodes
67
0
0
18 Feb 2025
FedNE: Surrogate-Assisted Federated Neighbor Embedding for
  Dimensionality Reduction
FedNE: Surrogate-Assisted Federated Neighbor Embedding for Dimensionality Reduction
Ziwei Li
Xiaoqi Wang
Hong-You Chen
Han-Wei Shen
Wei-Lun Chao
FedML
32
0
0
17 Sep 2024
Towards One Model for Classical Dimensionality Reduction: A Probabilistic Perspective on UMAP and t-SNE
Towards One Model for Classical Dimensionality Reduction: A Probabilistic Perspective on UMAP and t-SNE
Aditya Ravuri
Neil D. Lawrence
28
1
0
27 May 2024
Improving neural network representations using human similarity
  judgments
Improving neural network representations using human similarity judgments
Lukas Muttenthaler
Lorenz Linhardt
Jonas Dippel
Robert A. Vandermeulen
Katherine L. Hermann
Andrew Kyle Lampinen
Simon Kornblith
40
29
0
07 Jun 2023
Unsupervised visualization of image datasets using contrastive learning
Unsupervised visualization of image datasets using contrastive learning
Jan Boehm
Philipp Berens
D. Kobak
SSL
26
15
0
18 Oct 2022
ParaDime: A Framework for Parametric Dimensionality Reduction
ParaDime: A Framework for Parametric Dimensionality Reduction
A. Hinterreiter
Christina Humer
Bernhard Kainz
M. Streit
25
5
0
10 Oct 2022
Understanding How Dimension Reduction Tools Work: An Empirical Approach
  to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Understanding How Dimension Reduction Tools Work: An Empirical Approach to Deciphering t-SNE, UMAP, TriMAP, and PaCMAP for Data Visualization
Yingfan Wang
Haiyang Huang
Cynthia Rudin
Yaron Shaposhnik
159
301
0
08 Dec 2020
Contrastive Representation Learning: A Framework and Review
Contrastive Representation Learning: A Framework and Review
Phúc H. Lê Khắc
Graham Healy
Alan F. Smeaton
SSL
AI4TS
175
685
0
10 Oct 2020
Bringing UMAP Closer to the Speed of Light with GPU Acceleration
Bringing UMAP Closer to the Speed of Light with GPU Acceleration
Corey J. Nolet
V. Lafargue
Edward Raff
Thejaswi Nanditale
Tim Oates
John Zedlewski
Joshua Patterson
34
33
0
01 Aug 2020
1