ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01062
  4. Cited By
DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis

DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis

2 June 2022
B. Pfitzmann
Christoph Auer
Michele Dolfi
A. Nassar
Peter W. J. Staar
ArXivPDFHTML

Papers citing "DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis"

6 / 56 papers shown
Title
Optimized Table Tokenization for Table Structure Recognition
Optimized Table Tokenization for Table Structure Recognition
Maksym Lysak
Ahmed Nassar
Nikolaos Livathinos
Christoph Auer
Peter W. J. Staar
LMTD
28
13
0
05 May 2023
SelfDocSeg: A Self-Supervised vision-based Approach towards Document
  Segmentation
SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation
Subhajit Maity
Sanket Biswas
Siladittya Manna
Ayan Banerjee
Josep Lladós
Saumik Bhattacharya
Umapada Pal
36
5
0
01 May 2023
PARAGRAPH2GRAPH: A GNN-based framework for layout paragraph analysis
PARAGRAPH2GRAPH: A GNN-based framework for layout paragraph analysis
Shuyong Wei
Nuo Xu
27
5
0
24 Apr 2023
BaDLAD: A Large Multi-Domain Bengali Document Layout Analysis Dataset
BaDLAD: A Large Multi-Domain Bengali Document Layout Analysis Dataset
Md. Istiak Hossain Shihab
Md. Rakibul Hasan
Mahfuzur Rahman Emon
Syed Mobassir Hossen
Md. Nazmuddoha Ansary
...
Sayma Sultana Chowdhury
Farig Sadeque
Tahsin Reasat
Ahmed Imtiaz Humayun
Asif Sushmit
29
13
0
09 Mar 2023
You Actually Look Twice At it (YALTAi): using an object detection
  approach instead of region segmentation within the Kraken engine
You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engine
Thibault Clérice
27
16
0
19 Jul 2022
Delivering Document Conversion as a Cloud Service with High Throughput
  and Responsiveness
Delivering Document Conversion as a Cloud Service with High Throughput and Responsiveness
Christoph Auer
Michele Dolfi
A. Carvalho
Cesar Berrospi Ramis
P. W. J. S. I. Research
27
9
0
01 Jun 2022
Previous
12