ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.00737
  4. Cited By
Walk for Learning: A Random Walk Approach for Federated Learning from
  Heterogeneous Data

Walk for Learning: A Random Walk Approach for Federated Learning from Heterogeneous Data

1 June 2022
Ghadir Ayache
Venkat Dassari
S. E. Rouayheb
    FedML
ArXivPDFHTML

Papers citing "Walk for Learning: A Random Walk Approach for Federated Learning from Heterogeneous Data"

11 / 11 papers shown
Title
Private Weighted Random Walk Stochastic Gradient Descent
Private Weighted Random Walk Stochastic Gradient Descent
Ghadir Ayache
S. E. Rouayheb
FedML
34
19
0
03 Sep 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated
  Optimization
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
55
1,332
0
15 Jul 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
226
6,247
0
10 Dec 2019
On the Convergence of Local Descent Methods in Federated Learning
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
74
271
0
31 Oct 2019
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Tighter Theory for Local SGD on Identical and Heterogeneous Data
Ahmed Khaled
Konstantin Mishchenko
Peter Richtárik
71
433
0
10 Sep 2019
Adaptive Online Learning in Dynamic Environments
Adaptive Online Learning in Dynamic Environments
Lijun Zhang
Shiyin Lu
Zhi Zhou
57
185
0
25 Oct 2018
On Markov Chain Gradient Descent
On Markov Chain Gradient Descent
Tao Sun
Yuejiao Sun
W. Yin
BDL
41
102
0
12 Sep 2018
Adaptive Federated Learning in Resource Constrained Edge Computing
  Systems
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
242
1,706
0
14 Apr 2018
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,823
0
01 Jul 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
150
738
0
19 Mar 2014
Ergodic Mirror Descent
Ergodic Mirror Descent
John C. Duchi
Alekh Agarwal
M. Johansson
Michael I. Jordan
179
125
0
24 May 2011
1