ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.00416
  4. Cited By
In the Eye of the Beholder: Robust Prediction with Causal User Modeling

In the Eye of the Beholder: Robust Prediction with Causal User Modeling

1 June 2022
Amir Feder
G. Horowitz
Yoav Wald
Roi Reichart
Nir Rosenfeld
    OOD
ArXivPDFHTML

Papers citing "In the Eye of the Beholder: Robust Prediction with Causal User Modeling"

7 / 7 papers shown
Title
Data Augmentations for Improved (Large) Language Model Generalization
Data Augmentations for Improved (Large) Language Model Generalization
Amir Feder
Yoav Wald
Claudia Shi
S. Saria
David M. Blei
OOD
CML
32
7
0
19 Oct 2023
AdaptSSR: Pre-training User Model with Augmentation-Adaptive
  Self-Supervised Ranking
AdaptSSR: Pre-training User Model with Augmentation-Adaptive Self-Supervised Ranking
Yang Yu
Qi Liu
Kai Zhang
Yuren Zhang
Chao Song
Min Hou
Yuqing Yuan
Zhihao Ye
Zaixin Zhang
Sanshi Lei Yu
35
2
0
15 Oct 2023
An Invariant Learning Characterization of Controlled Text Generation
An Invariant Learning Characterization of Controlled Text Generation
Carolina Zheng
Claudia Shi
Keyon Vafa
Amir Feder
David M. Blei
OOD
38
8
0
31 May 2023
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
  Goals of Human Trust in AI
Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust in AI
Alon Jacovi
Ana Marasović
Tim Miller
Yoav Goldberg
252
426
0
15 Oct 2020
Out-of-Distribution Generalization via Risk Extrapolation (REx)
Out-of-Distribution Generalization via Risk Extrapolation (REx)
David M. Krueger
Ethan Caballero
J. Jacobsen
Amy Zhang
Jonathan Binas
Dinghuai Zhang
Rémi Le Priol
Aaron Courville
OOD
215
901
0
02 Mar 2020
How Algorithmic Confounding in Recommendation Systems Increases
  Homogeneity and Decreases Utility
How Algorithmic Confounding in Recommendation Systems Increases Homogeneity and Decreases Utility
A. Chaney
Brandon M Stewart
Barbara E. Engelhardt
CML
169
313
0
30 Oct 2017
Learning Attitudes and Attributes from Multi-Aspect Reviews
Learning Attitudes and Attributes from Multi-Aspect Reviews
Julian McAuley
J. Leskovec
Dan Jurafsky
200
296
0
15 Oct 2012
1