Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.00240
Cited By
Privacy for Free: How does Dataset Condensation Help Privacy?
1 June 2022
Tian Dong
Bo Zhao
Lingjuan Lyu
DD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Privacy for Free: How does Dataset Condensation Help Privacy?"
35 / 35 papers shown
Title
Rethinking Federated Graph Learning: A Data Condensation Perspective
Hao Zhang
Miao Hu
Yinlin Zhu
Lianglin Hu
FedML
DD
AI4CE
105
0
0
05 May 2025
Dataset Distillation with Neural Characteristic Function: A Minmax Perspective
Shaobo Wang
Yicun Yang
Ziqiang Liu
Chenghao Sun
Xuming Hu
Conghui He
Li Zhang
DD
157
10
0
28 Feb 2025
Does Training with Synthetic Data Truly Protect Privacy?
Yunpeng Zhao
Jie Zhang
150
1
0
18 Feb 2025
Trustworthy AI: Safety, Bias, and Privacy -- A Survey
Xingli Fang
Jianwei Li
Varun Mulchandani
Jung-Eun Kim
101
0
0
11 Feb 2025
Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Kai Wang
Zekai Li
Zhi-Qi Cheng
Samir Khaki
A. Sajedi
Ramakrishna Vedantam
Konstantinos N. Plataniotis
Alexander G. Hauptmann
Yang You
DD
165
6
0
22 Oct 2024
Dataset Distillation via Knowledge Distillation: Towards Efficient Self-Supervised Pre-Training of Deep Networks
S. Joshi
Jiayi Ni
Baharan Mirzasoleiman
DD
214
2
0
03 Oct 2024
Dataset Distillation-based Hybrid Federated Learning on Non-IID Data
Xiufang Shi
Wei Zhang
Mincheng Wu
Guangyi Liu
Z. Wen
Shibo He
Tejal Shah
R. Ranjan
DD
FedML
93
1
0
26 Sep 2024
Not All Samples Should Be Utilized Equally: Towards Understanding and Improving Dataset Distillation
Shaobo Wang
Yantai Yang
Qilong Wang
Kaixin Li
Linfeng Zhang
Junchi Yan
DD
130
6
0
22 Aug 2024
Breaking Resource Barriers in Speech Emotion Recognition via Data Distillation
Yi-Fen Chang
Zhao Ren
Zhonghao Zhao
Thanh Tam Nguyen
Kun Qian
Tanja Schultz
Björn W. Schuller
80
0
0
21 Jun 2024
Overcoming Data and Model Heterogeneities in Decentralized Federated Learning via Synthetic Anchors
Chun-Yin Huang
Kartik Srinivas
Xin Zhang
Xiaoxiao Li
DD
138
7
0
19 May 2024
Distilled Datamodel with Reverse Gradient Matching
Jingwen Ye
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
118
3
0
22 Apr 2024
PairAug: What Can Augmented Image-Text Pairs Do for Radiology?
Yutong Xie
Qi Chen
Sinuo Wang
Minh-Son To
Iris Lee
Ee Win Khoo
Kerolos Hendy
Daniel Koh
Yong-quan Xia
Qi Wu
MedIm
LM&MA
100
9
0
07 Apr 2024
Disentangled Condensation for Large-scale Graphs
Zhenbang Xiao
Shunyu Liu
Yu Wang
Tongya Zheng
Mingli Song
Mingli Song
Tongya Zheng
DD
265
7
0
18 Jan 2024
Rethinking Backdoor Attacks on Dataset Distillation: A Kernel Method Perspective
Ming-Yu Chung
Sheng-Yen Chou
Chia-Mu Yu
Pin-Yu Chen
Sy-Yen Kuo
Tsung-Yi Ho
DD
177
7
0
28 Nov 2023
PrivateLoRA For Efficient Privacy Preserving LLM
Yiming Wang
Yu Lin
Xiaodong Zeng
Guannan Zhang
109
14
0
23 Nov 2023
DataDAM: Efficient Dataset Distillation with Attention Matching
A. Sajedi
Samir Khaki
Ehsan Amjadian
Lucy Z. Liu
Y. Lawryshyn
Konstantinos N. Plataniotis
DD
174
69
0
29 Sep 2023
When Foundation Model Meets Federated Learning: Motivations, Challenges, and Future Directions
Weiming Zhuang
Chen Chen
Lingjuan Lyu
Chong Chen
Yaochu Jin
Lingjuan Lyu
AIFin
AI4CE
252
99
0
27 Jun 2023
DiffuseExpand: Expanding dataset for 2D medical image segmentation using diffusion models
Shitong Shao
Xiaohan Yuan
Zhenming Huang
Ziming Qiu
Shuai Wang
Kevin Zhou
MedIm
DiffM
71
8
0
26 Apr 2023
Loss-Curvature Matching for Dataset Selection and Condensation
Seung-Jae Shin
Heesun Bae
DongHyeok Shin
Weonyoung Joo
Il-Chul Moon
DD
102
27
0
08 Mar 2023
FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations
Hui-Po Wang
Dingfan Chen
Raouf Kerkouche
Mario Fritz
FedML
DD
106
4
0
02 Feb 2023
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
176
132
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
137
94
0
13 Jan 2023
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
124
79
0
11 Jan 2023
Accelerating Dataset Distillation via Model Augmentation
Lei Zhang
Jie M. Zhang
Bowen Lei
Subhabrata Mukherjee
Xiang Pan
Bo Zhao
Caiwen Ding
Yongbin Li
Dongkuan Xu
DD
149
66
0
12 Dec 2022
Minimizing the Accumulated Trajectory Error to Improve Dataset Distillation
Jiawei Du
Yiding Jiang
Vincent Y. F. Tan
Qiufeng Wang
Haizhou Li
DD
106
121
0
20 Nov 2022
DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics
Renjie Pi
Weizhong Zhang
Yueqi Xie
Jiahui Gao
Xiaoyu Wang
Sunghun Kim
Qifeng Chen
DD
93
28
0
20 Nov 2022
Private Set Generation with Discriminative Information
Dingfan Chen
Raouf Kerkouche
Mario Fritz
DD
80
39
0
07 Nov 2022
Dataset Distillation via Factorization
Songhua Liu
Kai Wang
Xingyi Yang
Jingwen Ye
Xinchao Wang
DD
226
148
0
30 Oct 2022
No Free Lunch in "Privacy for Free: How does Dataset Condensation Help Privacy"
Nicholas Carlini
Vitaly Feldman
Milad Nasr
DD
104
18
0
29 Sep 2022
Compressed Gastric Image Generation Based on Soft-Label Dataset Distillation for Medical Data Sharing
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
106
43
0
29 Sep 2022
Dataset Distillation Using Parameter Pruning
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
152
22
0
29 Sep 2022
Federated Learning via Decentralized Dataset Distillation in Resource-Constrained Edge Environments
Rui Song
Dai Liu
Da Chen
Andreas Festag
Carsten Trinitis
Martin Schulz
Alois C. Knoll
DD
FedML
119
66
0
24 Aug 2022
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
91
85
0
20 Jul 2022
Condensing Graphs via One-Step Gradient Matching
Wei Jin
Xianfeng Tang
Haoming Jiang
Zheng Li
Danqing Zhang
Jiliang Tang
Bin Ying
DD
109
111
0
15 Jun 2022
Privacy and Robustness in Federated Learning: Attacks and Defenses
Lingjuan Lyu
Han Yu
Xingjun Ma
Chen Chen
Lichao Sun
Jun Zhao
Qiang Yang
Philip S. Yu
FedML
337
380
0
07 Dec 2020
1