Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.00051
Cited By
Learning Instance-Specific Augmentations by Capturing Local Invariances
31 May 2022
Ning Miao
Tom Rainforth
Emile Mathieu
Yann Dubois
Yee Whye Teh
Adam Foster
Hyunjik Kim
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Instance-Specific Augmentations by Capturing Local Invariances"
9 / 9 papers shown
Title
Variational Partial Group Convolutions for Input-Aware Partial Equivariance of Rotations and Color-Shifts
Hyunsu Kim
Yegon Kim
Hongseok Yang
Juho Lee
37
0
0
05 Jul 2024
Explore-Go: Leveraging Exploration for Generalisation in Deep Reinforcement Learning
Max Weltevrede
Felix Kaubek
M. Spaan
Wendelin Bohmer
42
0
0
12 Jun 2024
Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
A. Mumuni
F. Mumuni
60
5
0
13 Mar 2024
A Generative Model of Symmetry Transformations
J. Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antorán
David Krueger
Richard E. Turner
Eric T. Nalisnick
José Miguel Hernández-Lobato
GAN
37
3
0
04 Mar 2024
AROID: Improving Adversarial Robustness through Online Instance-wise Data Augmentation
Lin Li
Jianing Qiu
Michael W. Spratling
AAML
30
4
0
12 Jun 2023
Incorporating Unlabelled Data into Bayesian Neural Networks
Mrinank Sharma
Tom Rainforth
Yee Whye Teh
Vincent Fortuin
SSL
UQCV
BDL
38
9
0
04 Apr 2023
A General Theory of Correct, Incorrect, and Extrinsic Equivariance
Dian Wang
Xu Zhu
Jung Yeon Park
Mingxi Jia
Guanang Su
Robert W. Platt
Robin G. Walters
24
13
0
08 Mar 2023
Co-Mixup: Saliency Guided Joint Mixup with Supermodular Diversity
Jang-Hyun Kim
Wonho Choo
Hosan Jeong
Hyun Oh Song
197
176
0
05 Feb 2021
Improving Transformation Invariance in Contrastive Representation Learning
Adam Foster
Rattana Pukdee
Tom Rainforth
51
22
0
19 Oct 2020
1