ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.16001
  4. Cited By
On the Usefulness of Embeddings, Clusters and Strings for Text Generator
  Evaluation

On the Usefulness of Embeddings, Clusters and Strings for Text Generator Evaluation

31 May 2022
Tiago Pimentel
Clara Meister
Ryan Cotterell
ArXivPDFHTML

Papers citing "On the Usefulness of Embeddings, Clusters and Strings for Text Generator Evaluation"

4 / 4 papers shown
Title
Controlled Text Generation for Black-box Language Models via Score-based
  Progressive Editor
Controlled Text Generation for Black-box Language Models via Score-based Progressive Editor
Sangwon Yu
Changmin Lee
Hojin Lee
Sungroh Yoon
27
0
0
13 Nov 2023
MAUVE Scores for Generative Models: Theory and Practice
MAUVE Scores for Generative Models: Theory and Practice
Krishna Pillutla
Lang Liu
John Thickstun
Sean Welleck
Swabha Swayamdipta
Rowan Zellers
Sewoong Oh
Yejin Choi
Zaïd Harchaoui
EGVM
35
21
0
30 Dec 2022
On the Blind Spots of Model-Based Evaluation Metrics for Text Generation
On the Blind Spots of Model-Based Evaluation Metrics for Text Generation
Tianxing He
Jingyu Zhang
Tianle Wang
Sachin Kumar
Kyunghyun Cho
James R. Glass
Yulia Tsvetkov
40
44
0
20 Dec 2022
The GEM Benchmark: Natural Language Generation, its Evaluation and
  Metrics
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
Sebastian Gehrmann
Tosin P. Adewumi
Karmanya Aggarwal
Pawan Sasanka Ammanamanchi
Aremu Anuoluwapo
...
Nishant Subramani
Wei-ping Xu
Diyi Yang
Akhila Yerukola
Jiawei Zhou
VLM
254
285
0
02 Feb 2021
1