Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.15703
Cited By
Lessons Learned from Data-Driven Building Control Experiments: Contrasting Gaussian Process-based MPC, Bilevel DeePC, and Deep Reinforcement Learning
31 May 2022
L. D. Natale
Yingzhao Lian
E. Maddalena
Jicheng Shi
Colin N. Jones
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Lessons Learned from Data-Driven Building Control Experiments: Contrasting Gaussian Process-based MPC, Bilevel DeePC, and Deep Reinforcement Learning"
8 / 8 papers shown
Title
Near-optimal Deep Reinforcement Learning Policies from Data for Zone Temperature Control
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
OffRL
AI4CE
66
6
0
10 Mar 2022
Physically Consistent Neural Networks for building thermal modeling: theory and analysis
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
PINN
AI4CE
84
88
0
06 Dec 2021
Data-driven control of room temperature and bidirectional EV charging using deep reinforcement learning: simulations and experiments
B. Svetozarevic
C. Baumann
S. Muntwiler
L. Di Natale
Melanie Zeilinger
Philipp Heer
AI4CE
33
35
0
02 Mar 2021
Data-Driven MPC for Quadrotors
G. Torrente
Elia Kaufmann
Philip Föhn
Davide Scaramuzza
125
210
0
10 Feb 2021
How Training Data Impacts Performance in Learning-based Control
Armin Lederer
A. Capone
Jonas Umlauft
Sandra Hirche
53
18
0
25 May 2020
Localized active learning of Gaussian process state space models
A. Capone
Jonas Umlauft
Thomas Beckers
Armin Lederer
Sandra Hirche
38
28
0
04 May 2020
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
187
5,212
0
26 Feb 2018
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
68
113
0
30 May 2017
1