ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15703
  4. Cited By
Lessons Learned from Data-Driven Building Control Experiments:
  Contrasting Gaussian Process-based MPC, Bilevel DeePC, and Deep Reinforcement
  Learning

Lessons Learned from Data-Driven Building Control Experiments: Contrasting Gaussian Process-based MPC, Bilevel DeePC, and Deep Reinforcement Learning

31 May 2022
L. D. Natale
Yingzhao Lian
E. Maddalena
Jicheng Shi
Colin N. Jones
ArXiv (abs)PDFHTML

Papers citing "Lessons Learned from Data-Driven Building Control Experiments: Contrasting Gaussian Process-based MPC, Bilevel DeePC, and Deep Reinforcement Learning"

8 / 8 papers shown
Title
Near-optimal Deep Reinforcement Learning Policies from Data for Zone
  Temperature Control
Near-optimal Deep Reinforcement Learning Policies from Data for Zone Temperature Control
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
OffRLAI4CE
66
6
0
10 Mar 2022
Physically Consistent Neural Networks for building thermal modeling:
  theory and analysis
Physically Consistent Neural Networks for building thermal modeling: theory and analysis
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
PINNAI4CE
84
88
0
06 Dec 2021
Data-driven control of room temperature and bidirectional EV charging
  using deep reinforcement learning: simulations and experiments
Data-driven control of room temperature and bidirectional EV charging using deep reinforcement learning: simulations and experiments
B. Svetozarevic
C. Baumann
S. Muntwiler
L. Di Natale
Melanie Zeilinger
Philipp Heer
AI4CE
33
35
0
02 Mar 2021
Data-Driven MPC for Quadrotors
Data-Driven MPC for Quadrotors
G. Torrente
Elia Kaufmann
Philip Föhn
Davide Scaramuzza
125
210
0
10 Feb 2021
How Training Data Impacts Performance in Learning-based Control
How Training Data Impacts Performance in Learning-based Control
Armin Lederer
A. Capone
Jonas Umlauft
Sandra Hirche
53
18
0
25 May 2020
Localized active learning of Gaussian process state space models
Localized active learning of Gaussian process state space models
A. Capone
Jonas Umlauft
Thomas Beckers
Armin Lederer
Sandra Hirche
38
28
0
04 May 2020
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
187
5,212
0
26 Feb 2018
Identification of Gaussian Process State Space Models
Identification of Gaussian Process State Space Models
Stefanos Eleftheriadis
Tom Nicholson
M. Deisenroth
J. Hensman
68
113
0
30 May 2017
1