ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15540
  4. Cited By
MACE: An Efficient Model-Agnostic Framework for Counterfactual
  Explanation

MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation

31 May 2022
Wenzhuo Yang
Jia Li
Caiming Xiong
S. Hoi
    CML
ArXivPDFHTML

Papers citing "MACE: An Efficient Model-Agnostic Framework for Counterfactual Explanation"

10 / 10 papers shown
Title
Flexible Counterfactual Explanations with Generative Models
Flexible Counterfactual Explanations with Generative Models
Stig Hellemans
Andres Algaba
Sam Verboven
Vincent Ginis
29
0
0
24 Feb 2025
Is Conversational XAI All You Need? Human-AI Decision Making With a Conversational XAI Assistant
Is Conversational XAI All You Need? Human-AI Decision Making With a Conversational XAI Assistant
Gaole He
Nilay Aishwarya
U. Gadiraju
38
6
0
29 Jan 2025
EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning
  Applications
EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications
N. Pillai
A. Das
M. Ayoola
Ganga Gireesan
B. Nanduri
Mahalingam Ramkumar
SyDa
41
2
0
27 Mar 2024
What is different between these datasets?
What is different between these datasets?
Varun Babbar
Zhicheng Guo
Cynthia Rudin
59
1
0
08 Mar 2024
Navigating the Structured What-If Spaces: Counterfactual Generation via
  Structured Diffusion
Navigating the Structured What-If Spaces: Counterfactual Generation via Structured Diffusion
Nishtha Madaan
Srikanta J. Bedathur
DiffM
38
0
0
21 Dec 2023
What's meant by explainable model: A Scoping Review
What's meant by explainable model: A Scoping Review
Mallika Mainali
Rosina O. Weber
XAI
29
0
0
18 Jul 2023
On Minimizing the Impact of Dataset Shifts on Actionable Explanations
On Minimizing the Impact of Dataset Shifts on Actionable Explanations
Anna P. Meyer
Dan Ley
Suraj Srinivas
Himabindu Lakkaraju
FAtt
34
6
0
11 Jun 2023
Achieving Diversity in Counterfactual Explanations: a Review and
  Discussion
Achieving Diversity in Counterfactual Explanations: a Review and Discussion
Thibault Laugel
Adulam Jeyasothy
Marie-Jeanne Lesot
Christophe Marsala
Marcin Detyniecki
CML
23
9
0
10 May 2023
OmniXAI: A Library for Explainable AI
OmniXAI: A Library for Explainable AI
Wenzhuo Yang
Hung Le
Tanmay Laud
Silvio Savarese
S. Hoi
SyDa
29
39
0
01 Jun 2022
Towards A Rigorous Science of Interpretable Machine Learning
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
1