ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.15015
  4. Cited By
A principled framework for the design and analysis of token algorithms

A principled framework for the design and analysis of token algorithms

30 May 2022
Hadrien Hendrikx
    FedML
ArXivPDFHTML

Papers citing "A principled framework for the design and analysis of token algorithms"

22 / 22 papers shown
Title
Walk for Learning: A Random Walk Approach for Federated Learning from
  Heterogeneous Data
Walk for Learning: A Random Walk Approach for Federated Learning from Heterogeneous Data
Ghadir Ayache
Venkat Dassari
S. E. Rouayheb
FedML
35
19
0
01 Jun 2022
Asynchronous Parallel Incremental Block-Coordinate Descent for
  Decentralized Machine Learning
Asynchronous Parallel Incremental Block-Coordinate Descent for Decentralized Machine Learning
Hao Chen
Yu Ye
Ming Xiao
Mikael Skoglund
65
3
0
07 Feb 2022
Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
  Decentralized Optimization Over Time-Varying Networks
Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks
D. Kovalev
Elnur Gasanov
Peter Richtárik
Alexander Gasnikov
46
44
0
08 Jun 2021
Privacy Amplification by Decentralization
Privacy Amplification by Decentralization
Edwige Cyffers
A. Bellet
FedML
92
41
0
09 Dec 2020
Dual-Free Stochastic Decentralized Optimization with Variance Reduction
Dual-Free Stochastic Decentralized Optimization with Variance Reduction
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
37
25
0
25 Jun 2020
Optimal and Practical Algorithms for Smooth and Strongly Convex
  Decentralized Optimization
Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization
D. Kovalev
Adil Salim
Peter Richtárik
36
83
0
21 Jun 2020
An Optimal Algorithm for Decentralized Finite Sum Optimization
An Optimal Algorithm for Decentralized Finite Sum Optimization
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulie
52
45
0
20 May 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local
  Updates
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
78
505
0
23 Mar 2020
Revisiting EXTRA for Smooth Distributed Optimization
Revisiting EXTRA for Smooth Distributed Optimization
Huan Li
Zhouchen Lin
26
40
0
24 Feb 2020
Advances and Open Problems in Federated Learning
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
212
6,229
0
10 Dec 2019
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite
  Sums
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulie
62
31
0
27 May 2019
Accelerated Decentralized Optimization with Local Updates for Smooth and
  Strongly Convex Objectives
Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
65
42
0
05 Oct 2018
A Dual Approach for Optimal Algorithms in Distributed Optimization over
  Networks
A Dual Approach for Optimal Algorithms in Distributed Optimization over Networks
César A. Uribe
Soomin Lee
Alexander Gasnikov
A. Nedić
46
137
0
03 Sep 2018
Don't Use Large Mini-Batches, Use Local SGD
Don't Use Large Mini-Batches, Use Local SGD
Tao R. Lin
Sebastian U. Stich
Kumar Kshitij Patel
Martin Jaggi
111
433
0
22 Aug 2018
Local SGD Converges Fast and Communicates Little
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
164
1,061
0
24 May 2018
Walkman: A Communication-Efficient Random-Walk Algorithm for
  Decentralized Optimization
Walkman: A Communication-Efficient Random-Walk Algorithm for Decentralized Optimization
Xianghui Mao
Kun Yuan
Yubin Hu
Yuantao Gu
Ali H. Sayed
W. Yin
45
58
0
18 Apr 2018
Optimal algorithms for smooth and strongly convex distributed
  optimization in networks
Optimal algorithms for smooth and strongly convex distributed optimization in networks
Kevin Scaman
Francis R. Bach
Sébastien Bubeck
Y. Lee
Laurent Massoulié
58
329
0
28 Feb 2017
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
380
17,437
0
17 Feb 2016
SDCA without Duality, Regularization, and Individual Convexity
SDCA without Duality, Regularization, and Individual Convexity
Shai Shalev-Shwartz
39
104
0
04 Feb 2016
An optimal randomized incremental gradient method
An optimal randomized incremental gradient method
Guanghui Lan
Yi Zhou
124
220
0
08 Jul 2015
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly
  Convex Composite Objectives
SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives
Aaron Defazio
Francis R. Bach
Simon Lacoste-Julien
ODL
131
1,823
0
01 Jul 2014
Minimizing Finite Sums with the Stochastic Average Gradient
Minimizing Finite Sums with the Stochastic Average Gradient
Mark Schmidt
Nicolas Le Roux
Francis R. Bach
312
1,245
0
10 Sep 2013
1