ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.14629
  4. Cited By
Superclass Adversarial Attack

Superclass Adversarial Attack

29 May 2022
Soichiro Kumano
Hiroshi Kera
T. Yamasaki
    AAML
ArXivPDFHTML

Papers citing "Superclass Adversarial Attack"

30 / 30 papers shown
Title
T$_k$ML-AP: Adversarial Attacks to Top-$k$ Multi-Label Learning
Tk_kk​ML-AP: Adversarial Attacks to Top-kkk Multi-Label Learning
Shu Hu
Lipeng Ke
Xin Wang
Siwei Lyu
VLM
AAML
61
34
0
31 Jul 2021
Attack Transferability Characterization for Adversarially Robust
  Multi-label Classification
Attack Transferability Characterization for Adversarially Robust Multi-label Classification
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
35
4
0
29 Jun 2021
Improving Hierarchical Adversarial Robustness of Deep Neural Networks
Improving Hierarchical Adversarial Robustness of Deep Neural Networks
A. Ma
Aladin Virmaux
Kevin Scaman
Juwei Lu
AAML
47
5
0
17 Feb 2021
Characterizing the Evasion Attackability of Multi-label Classifiers
Characterizing the Evasion Attackability of Multi-label Classifiers
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
31
10
0
17 Dec 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
62
424
0
16 Jul 2020
Geometry-Inspired Top-k Adversarial Perturbations
Geometry-Inspired Top-k Adversarial Perturbations
Nurislam Tursynbek
Aleksandr Petiushko
Ivan Oseledets
AAML
41
10
0
28 Jun 2020
Domain Knowledge Alleviates Adversarial Attacks in Multi-Label
  Classifiers
Domain Knowledge Alleviates Adversarial Attacks in Multi-Label Classifiers
S. Melacci
Gabriele Ciravegna
Angelo Sotgiu
Ambra Demontis
Battista Biggio
Marco Gori
Fabio Roli
66
15
0
06 Jun 2020
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
56
404
0
26 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
374
42,299
0
03 Dec 2019
Square Attack: a query-efficient black-box adversarial attack via random
  search
Square Attack: a query-efficient black-box adversarial attack via random search
Maksym Andriushchenko
Francesco Croce
Nicolas Flammarion
Matthias Hein
AAML
75
987
0
29 Nov 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary
  Attack
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
84
488
0
03 Jul 2019
Fooling automated surveillance cameras: adversarial patches to attack
  person detection
Fooling automated surveillance cameras: adversarial patches to attack person detection
Simen Thys
W. V. Ranst
Toon Goedemé
AAML
104
568
0
18 Apr 2019
Multi-Label Adversarial Perturbations
Multi-Label Adversarial Perturbations
Qingquan Song
Haifeng Jin
Xiao Huang
Xia Hu
AAML
46
37
0
02 Jan 2019
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
191
3,180
0
01 Feb 2018
Characterizing Adversarial Subspaces Using Local Intrinsic
  Dimensionality
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
105
738
0
08 Jan 2018
A General Framework for Adversarial Examples with Objectives
A General Framework for Adversarial Examples with Objectives
Mahmood Sharif
Sruti Bhagavatula
Lujo Bauer
Michael K. Reiter
AAML
GAN
51
193
0
31 Dec 2017
One pixel attack for fooling deep neural networks
One pixel attack for fooling deep neural networks
Jiawei Su
Danilo Vasconcellos Vargas
Kouichi Sakurai
AAML
115
2,323
0
24 Oct 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial
  Examples
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
64
641
0
13 Sep 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
273
12,029
0
19 Jun 2017
Adversarial Machine Learning at Scale
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
461
3,138
0
04 Nov 2016
Universal adversarial perturbations
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
130
2,525
0
26 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
233
8,548
0
16 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,893
0
08 Jul 2016
Wide Residual Networks
Wide Residual Networks
Sergey Zagoruyko
N. Komodakis
316
7,971
0
23 May 2016
The Limitations of Deep Learning in Adversarial Settings
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
84
3,955
0
24 Nov 2015
Adversarial Manipulation of Deep Representations
Adversarial Manipulation of Deep Representations
S. Sabour
Yanshuai Cao
Fartash Faghri
David J. Fleet
GAN
AAML
69
286
0
16 Nov 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
127
4,886
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
237
19,017
0
20 Dec 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
243
14,893
1
21 Dec 2013
1