Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.14299
Cited By
Deep Learning with Label Noise: A Hierarchical Approach
28 May 2022
Li-Wei Chen
Ningyuan Huang
Cong Mu
Hayden S. Helm
Kate Lytvynets
Weiwei Yang
Carey E. Priebe
NoLa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Learning with Label Noise: A Hierarchical Approach"
39 / 39 papers shown
Title
On the Robustness of Monte Carlo Dropout Trained with Noisy Labels
Purvi Goel
Li Chen
NoLa
70
15
0
22 Mar 2021
Inducing a hierarchy for multi-class classification problems
Hayden S. Helm
Weiwei Yang
Sujeeth Bharadwaj
Kate Lytvynets
Oriana Riva
Christopher M. White
Ali Geisa
Carey E. Priebe
46
7
0
20 Feb 2021
Robust Deep Learning with Active Noise Cancellation for Spatial Computing
Li Chen
David Yang
Purvi Goel
I. Kabul
33
2
0
16 Nov 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
117
998
0
16 Jul 2020
Meta Soft Label Generation for Noisy Labels
G. Algan
ilkay Ulusoy
NoLa
79
38
0
11 Jul 2020
Label Noise Types and Their Effects on Deep Learning
G. Algan
ilkay Ulusoy
NoLa
78
53
0
23 Mar 2020
NoiseRank: Unsupervised Label Noise Reduction with Dependence Models
Karishma Sharma
Pinar E. Donmez
Enming Luo
Yan Liu
I. Z. Yalniz
NoLa
120
34
0
15 Mar 2020
DivideMix: Learning with Noisy Labels as Semi-supervised Learning
Junnan Li
R. Socher
Guosheng Lin
NoLa
110
1,036
0
18 Feb 2020
Image Classification with Deep Learning in the Presence of Noisy Labels: A Survey
G. Algan
ilkay Ulusoy
NoLa
VLM
88
333
0
11 Dec 2019
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
568
42,677
0
03 Dec 2019
SELF: Learning to Filter Noisy Labels with Self-Ensembling
Philipp Kratzer
Marc Toussaint
Thi Phuong Nhung Ngo
T. Nguyen
Jim Mainprice
Thomas Brox
NoLa
85
317
0
04 Oct 2019
Symmetric Cross Entropy for Robust Learning with Noisy Labels
Yisen Wang
Xingjun Ma
Zaiyi Chen
Yuan Luo
Jinfeng Yi
James Bailey
NoLa
96
904
0
16 Aug 2019
Curriculum Loss: Robust Learning and Generalization against Label Corruption
Yueming Lyu
Ivor W. Tsang
NoLa
114
172
0
24 May 2019
Understanding and Utilizing Deep Neural Networks Trained with Noisy Labels
Pengfei Chen
B. Liao
Guangyong Chen
Shengyu Zhang
NoLa
80
388
0
13 May 2019
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
102
617
0
25 Apr 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
89
727
0
28 Jan 2019
On Symmetric Losses for Learning from Corrupted Labels
Nontawat Charoenphakdee
Jongyeong Lee
Masashi Sugiyama
NoLa
82
105
0
27 Jan 2019
How does Disagreement Help Generalization against Label Corruption?
Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
NoLa
82
787
0
14 Jan 2019
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Zhilu Zhang
M. Sabuncu
NoLa
85
2,615
0
20 May 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
132
2,082
0
18 Apr 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
134
556
0
14 Feb 2018
A Semi-Supervised Two-Stage Approach to Learning from Noisy Labels
Yifan Ding
Liqiang Wang
Deliang Fan
Boqing Gong
NoLa
63
103
0
08 Feb 2018
Robust Loss Functions under Label Noise for Deep Neural Networks
Aritra Ghosh
Himanshu Kumar
P. Sastry
NoLa
OOD
80
959
0
27 Dec 2017
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
133
1,459
0
14 Dec 2017
Learning with Biased Complementary Labels
Xiyu Yu
Tongliang Liu
Biwei Huang
Dacheng Tao
73
198
0
27 Nov 2017
B-CNN: Branch Convolutional Neural Network for Hierarchical Classification
Xinqi Zhu
Michael Bain
175
152
0
28 Sep 2017
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
138
1,829
0
16 Jun 2017
Decoupling "when to update" from "how to update"
Eran Malach
Shai Shalev-Shwartz
NoLa
104
569
0
08 Jun 2017
Learning Deep Networks from Noisy Labels with Dropout Regularization
Ishan Jindal
M. Nokleby
Xuewen Chen
NoLa
73
184
0
09 May 2017
Learning from Noisy Labels with Distillation
Yuncheng Li
Jianchao Yang
Yale Song
Liangliang Cao
Jiebo Luo
Li Li
NoLa
92
550
0
07 Mar 2017
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
524
10,358
0
16 Nov 2016
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Zhuang Li
NoLa
125
1,459
0
13 Sep 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.3K
194,641
0
10 Dec 2015
Auxiliary Image Regularization for Deep CNNs with Noisy Labels
S. Azadi
Jiashi Feng
Stefanie Jegelka
Trevor Darrell
NoLa
89
89
0
22 Nov 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
192
1,894
0
20 May 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
One weird trick for parallelizing convolutional neural networks
A. Krizhevsky
GNN
103
1,303
0
23 Apr 2014
Making Risk Minimization Tolerant to Label Noise
Aritra Ghosh
Naresh Manwani
P. Sastry
NoLa
163
215
0
14 Mar 2014
Noise Tolerance under Risk Minimization
Naresh Manwani
S. M. I. P. S. Sastry
NoLa
201
277
0
24 Sep 2011
1