ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.14249
  4. Cited By
Experience report of physics-informed neural networks in fluid
  simulations: pitfalls and frustration

Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration

27 May 2022
Pi-Yueh Chuang
L. Barba
    PINN
ArXivPDFHTML

Papers citing "Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration"

7 / 7 papers shown
Title
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
81
0
0
25 Apr 2025
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Practical Aspects on Solving Differential Equations Using Deep Learning: A Primer
Georgios Is. Detorakis
28
0
0
21 Aug 2024
Weak baselines and reporting biases lead to overoptimism in machine
  learning for fluid-related partial differential equations
Weak baselines and reporting biases lead to overoptimism in machine learning for fluid-related partial differential equations
N. McGreivy
Ammar Hakim
AI4CE
39
43
0
09 Jul 2024
On the Role of Fixed Points of Dynamical Systems in Training
  Physics-Informed Neural Networks
On the Role of Fixed Points of Dynamical Systems in Training Physics-Informed Neural Networks
Franz M. Rohrhofer
S. Posch
C. Gößnitzer
Bernhard C. Geiger
PINN
44
17
0
25 Mar 2022
Modeling the Shape of the Brain Connectome via Deep Neural Networks
Modeling the Shape of the Brain Connectome via Deep Neural Networks
Haocheng Dai
M. Bauer
P. T. Fletcher
S. Joshi
MedIm
DiffM
17
1
0
06 Mar 2022
Physics-based Deep Learning
Physics-based Deep Learning
Nils Thuerey
Philipp Holl
P. Holl
Patrick Schnell
Felix Trost
Kiwon Um
P. Schnell
F. Trost
PINN
AI4CE
56
92
0
11 Sep 2021
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time
  Super-Resolution Framework
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
187
141
0
01 May 2020
1