ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.14211
  4. Cited By
KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal

KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal

27 May 2022
Tadashi Kozuno
Wenhao Yang
Nino Vieillard
Toshinori Kitamura
Yunhao Tang
Jincheng Mei
Pierre Ménard
M. G. Azar
Michal Valko
Rémi Munos
Olivier Pietquin
M. Geist
Csaba Szepesvári
ArXivPDFHTML

Papers citing "KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal"

4 / 4 papers shown
Title
Nearly Optimal Sample Complexity of Offline KL-Regularized Contextual Bandits under Single-Policy Concentrability
Nearly Optimal Sample Complexity of Offline KL-Regularized Contextual Bandits under Single-Policy Concentrability
Qingyue Zhao
Kaixuan Ji
Heyang Zhao
Tong Zhang
Q. Gu
OffRL
45
0
0
09 Feb 2025
Mirror Descent Actor Critic via Bounded Advantage Learning
Mirror Descent Actor Critic via Bounded Advantage Learning
Ryo Iwaki
93
0
0
06 Feb 2025
Regularization and Variance-Weighted Regression Achieves Minimax
  Optimality in Linear MDPs: Theory and Practice
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Toshinori Kitamura
Tadashi Kozuno
Yunhao Tang
Nino Vieillard
Michal Valko
...
Olivier Pietquin
M. Geist
Csaba Szepesvári
Wataru Kumagai
Yutaka Matsuo
OffRL
30
2
0
22 May 2023
Policy Mirror Descent for Reinforcement Learning: Linear Convergence,
  New Sampling Complexity, and Generalized Problem Classes
Policy Mirror Descent for Reinforcement Learning: Linear Convergence, New Sampling Complexity, and Generalized Problem Classes
Guanghui Lan
89
136
0
30 Jan 2021
1