Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.13925
Cited By
DELTA: Diverse Client Sampling for Fasting Federated Learning
27 May 2022
Lung-Chuang Wang
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DELTA: Diverse Client Sampling for Fasting Federated Learning"
50 / 50 papers shown
Title
Towards Optimal Heterogeneous Client Sampling in Multi-Model Federated Learning
Haoran Zhang
Zejun Gong
Zekai Li
Marie Siew
Carlee Joe-Wong
Rachid El-Azouzi
98
0
0
07 Apr 2025
A Unified Analysis of Federated Learning with Arbitrary Client Participation
Shiqiang Wang
Mingyue Ji
FedML
76
56
0
31 Dec 2024
On the effectiveness of partial variance reduction in federated learning with heterogeneous data
Yue Liu
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
61
9
0
05 Dec 2022
FLIS: Clustered Federated Learning via Inference Similarity for Non-IID Data Distribution
Mahdi Morafah
Saeed Vahidian
Weijia Wang
Bill Lin
OOD
FedML
23
37
0
20 Aug 2022
Fast Heterogeneous Federated Learning with Hybrid Client Selection
Guangyuan Shen
D. Gao
Duanxiao Song
Libin Yang
Xukai Zhou
Shirui Pan
W. Lou
Fang Zhou
FedML
57
12
0
10 Aug 2022
FedVARP: Tackling the Variance Due to Partial Client Participation in Federated Learning
Divyansh Jhunjhunwala
Pranay Sharma
Aushim Nagarkatti
Gauri Joshi
FedML
66
61
0
28 Jul 2022
A Computation and Communication Efficient Method for Distributed Nonconvex Problems in the Partial Participation Setting
Alexander Tyurin
Peter Richtárik
FedML
22
4
0
31 May 2022
Communication-Efficient Device Scheduling for Federated Learning Using Stochastic Optimization
Jake B. Perazzone
Shiqiang Wang
Mingyue Ji
Kevin S. Chan
FedML
43
74
0
19 Jan 2022
Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback
Boxin Zhao
Lingxiao Wang
Mladen Kolar
Ziqi Liu
Qing Cui
Jun Zhou
Chaochao Chen
FedML
100
11
0
28 Dec 2021
Towards Federated Learning on Time-Evolving Heterogeneous Data
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
40
30
0
25 Dec 2021
Tackling System and Statistical Heterogeneity for Federated Learning with Adaptive Client Sampling
Bing Luo
Wenli Xiao
Shiqiang Wang
Jianwei Huang
Leandros Tassiulas
FedML
67
172
0
21 Dec 2021
FedSoft: Soft Clustered Federated Learning with Proximal Local Updating
Yichen Ruan
Carlee Joe-Wong
FedML
43
90
0
11 Dec 2021
Context-Aware Online Client Selection for Hierarchical Federated Learning
Zhe Qu
Rui Duan
Lixing Chen
Jie Xu
Zhuo Lu
Yao-Hong Liu
61
61
0
02 Dec 2021
A General Theory for Client Sampling in Federated Learning
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
24
13
0
26 Jul 2021
A Field Guide to Federated Optimization
Jianyu Wang
Zachary B. Charles
Zheng Xu
Gauri Joshi
H. B. McMahan
...
Mi Zhang
Tong Zhang
Chunxiang Zheng
Chen Zhu
Wennan Zhu
FedML
252
415
0
14 Jul 2021
Federated Graph Classification over Non-IID Graphs
Han Xie
Jing Ma
Li Xiong
Carl Yang
FedML
64
158
0
25 Jun 2021
Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
46
189
0
12 May 2021
Advances in Importance Sampling
Victor Elvira
Luca Martino
AI4TS
73
106
0
10 Feb 2021
Federated Multi-Armed Bandits
Chengshuai Shi
Cong Shen
FedML
96
93
0
28 Jan 2021
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
50
256
0
27 Jan 2021
Bandit-based Communication-Efficient Client Selection Strategies for Federated Learning
Yae Jee Cho
Samarth Gupta
Gauri Joshi
Osman Yağan
FedML
45
68
0
14 Dec 2020
Federated Learning under Importance Sampling
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
45
53
0
14 Dec 2020
Dynamic Clustering in Federated Learning
Yeongwoo Kim
Ezeddin Al Hakim
Johan Haraldson
Henrik Eriksson
J. M. B. D. Silva
Carlo Fischione
38
57
0
07 Dec 2020
Stochastic Client Selection for Federated Learning with Volatile Clients
Tiansheng Huang
Weiwei Lin
Li Shen
Keqin Li
Albert Y. Zomaya
FedML
80
98
0
17 Nov 2020
Budgeted Online Selection of Candidate IoT Clients to Participate in Federated Learning
Ihab Mohammed
Shadha Tabatabai
Ala I. Al-Fuqaha
Faissal El Bouanani
Junaid Qadir
Basheer Qolomany
Mohsen Guizani
45
60
0
16 Nov 2020
Optimal Client Sampling for Federated Learning
Jiajun He
Samuel Horváth
Peter Richtárik
FedML
65
195
0
26 Oct 2020
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients
Enmao Diao
Jie Ding
Vahid Tarokh
FedML
91
550
0
03 Oct 2020
Client Selection in Federated Learning: Convergence Analysis and Power-of-Choice Selection Strategies
Yae Jee Cho
Jianyu Wang
Gauri Joshi
FedML
131
404
0
03 Oct 2020
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
Sai Praneeth Karimireddy
Martin Jaggi
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
73
217
0
08 Aug 2020
Communication-Efficient Federated Learning via Optimal Client Sampling
Mónica Ribero
H. Vikalo
FedML
50
94
0
30 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
45
1,321
0
15 Jul 2020
Multi-Armed Bandit Based Client Scheduling for Federated Learning
Wenchao Xia
Tony Q.S. Quek
Kun Guo
Wanli Wen
Howard H. Yang
Hongbo Zhu
FedML
83
219
0
05 Jul 2020
Personalized Federated Learning with Moreau Envelopes
Canh T. Dinh
N. H. Tran
Tuan Dung Nguyen
FedML
65
982
0
16 Jun 2020
Ensemble Distillation for Robust Model Fusion in Federated Learning
Tao R. Lin
Lingjing Kong
Sebastian U. Stich
Martin Jaggi
FedML
74
1,031
0
12 Jun 2020
FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data
Xinwei Zhang
Mingyi Hong
S. Dhople
W. Yin
Yang Liu
FedML
44
229
0
22 May 2020
A Unified Theory of Decentralized SGD with Changing Topology and Local Updates
Anastasia Koloskova
Nicolas Loizou
Sadra Boreiri
Martin Jaggi
Sebastian U. Stich
FedML
76
499
0
23 Mar 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
88
1,417
0
29 Feb 2020
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
45
182
0
09 Feb 2020
Accelerating Federated Learning via Momentum Gradient Descent
Wei Liu
Li Chen
Yunfei Chen
Wenyi Zhang
FedML
AI4CE
60
292
0
08 Oct 2019
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
113
1,128
0
13 Sep 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
125
2,311
0
04 Jul 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
87
5,105
0
14 Dec 2018
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
113
1,410
0
03 Dec 2018
Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning
Hao Yu
Sen Yang
Shenghuo Zhu
MoMe
FedML
66
602
0
17 Jul 2018
Not All Samples Are Created Equal: Deep Learning with Importance Sampling
Angelos Katharopoulos
François Fleuret
62
515
0
02 Mar 2018
Safe Adaptive Importance Sampling
Sebastian U. Stich
Anant Raj
Martin Jaggi
54
54
0
07 Nov 2017
Biased Importance Sampling for Deep Neural Network Training
Angelos Katharopoulos
François Fleuret
42
67
0
31 May 2017
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
246
17,328
0
17 Feb 2016
Variance Reduction in SGD by Distributed Importance Sampling
Guillaume Alain
Alex Lamb
Chinnadhurai Sankar
Aaron Courville
Yoshua Bengio
FedML
62
198
0
20 Nov 2015
Stochastic Optimization with Importance Sampling
P. Zhao
Tong Zhang
72
343
0
13 Jan 2014
1