ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.13662
  4. Cited By
Explaining Preferences with Shapley Values
v1v2 (latest)

Explaining Preferences with Shapley Values

26 May 2022
Robert Hu
Siu Lun Chau
Jaime Ferrando Huertas
Dino Sejdinovic
    TDIFAtt
ArXiv (abs)PDFHTML

Papers citing "Explaining Preferences with Shapley Values"

12 / 12 papers shown
Title
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Efficient Hyperparameter Tuning for Large Scale Kernel Ridge Regression
Giacomo Meanti
Luigi Carratino
Ernesto De Vito
Lorenzo Rosasco
53
13
0
17 Jan 2022
RKHS-SHAP: Shapley Values for Kernel Methods
RKHS-SHAP: Shapley Values for Kernel Methods
Siu Lun Chau
Robert Hu
Javier I. González
Dino Sejdinovic
FAtt
60
20
0
18 Oct 2021
On Locality of Local Explanation Models
On Locality of Local Explanation Models
Sahra Ghalebikesabi
Lucile Ter-Minassian
Karla Diaz-Ordaz
Chris Holmes
FedMLFAtt
60
40
0
24 Jun 2021
GraphSVX: Shapley Value Explanations for Graph Neural Networks
GraphSVX: Shapley Value Explanations for Graph Neural Networks
Alexandre Duval
Fragkiskos D. Malliaros
FAtt
65
90
0
18 Apr 2021
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
106
251
0
21 Nov 2020
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual
  Predictions of Complex Models
Causal Shapley Values: Exploiting Causal Knowledge to Explain Individual Predictions of Complex Models
Tom Heskes
E. Sijben
I. G. Bucur
Tom Claassen
FAttTDI
109
153
0
03 Nov 2020
True to the Model or True to the Data?
True to the Model or True to the Data?
Hugh Chen
Joseph D. Janizek
Scott M. Lundberg
Su-In Lee
TDIFAtt
153
166
0
29 Jun 2020
Learning Inconsistent Preferences with Gaussian Processes
Learning Inconsistent Preferences with Gaussian Processes
Siu Lun Chau
Javier I. González
Dino Sejdinovic
37
7
0
06 Jun 2020
Feature relevance quantification in explainable AI: A causal problem
Feature relevance quantification in explainable AI: A causal problem
Dominik Janzing
Lenon Minorics
Patrick Blobaum
FAttCML
74
282
0
29 Oct 2019
Asymmetric Shapley values: incorporating causal knowledge into
  model-agnostic explainability
Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability
Christopher Frye
C. Rowat
Ilya Feige
61
182
0
14 Oct 2019
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,027
0
16 Feb 2016
Universality, Characteristic Kernels and RKHS Embedding of Measures
Universality, Characteristic Kernels and RKHS Embedding of Measures
Bharath K. Sriperumbudur
Kenji Fukumizu
Gert R. G. Lanckriet
224
531
0
03 Mar 2010
1