Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.13648
Cited By
A Unified Analysis of Federated Learning with Arbitrary Client Participation
31 December 2024
Shiqiang Wang
Mingyue Ji
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Unified Analysis of Federated Learning with Arbitrary Client Participation"
50 / 63 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
78
0
0
12 May 2025
Deploying Large AI Models on Resource-Limited Devices with Split Federated Learning
Xianke Qiang
Hongda Liu
Xinran Zhang
Zheng Chang
Ying-Chang Liang
FedML
54
0
0
12 Apr 2025
Exact and Linear Convergence for Federated Learning under Arbitrary Client Participation is Attainable
Bicheng Ying
Zhe Li
Haibo Yang
FedML
87
1
0
25 Mar 2025
Generalization in Federated Learning: A Conditional Mutual Information Framework
Ziqiao Wang
Cheng Long
Yongyi Mao
FedML
65
1
0
06 Mar 2025
Communication-Efficient Device Scheduling for Federated Learning Using Lyapunov Optimization
Jake B. Perazzone
Shiqiang Wang
Mingyue Ji
Kevin S. Chan
FedML
94
0
0
01 Mar 2025
Distributed Online Optimization with Stochastic Agent Availability
J. Achddou
Nicolò Cesa-Bianchi
Hao Qiu
83
0
0
25 Nov 2024
ProFL: Performative Robust Optimal Federated Learning
Xue Zheng
Tian Xie
Xuwei Tan
Aylin Yener
Xueru Zhang
Ali Payani
Myungjin Lee
FedML
61
0
0
23 Oct 2024
Federated brain tumor segmentation: an extensive benchmark
Matthis Manthe
Stefan Duffner
Carole Lartizien
OOD
FedML
76
5
0
07 Oct 2024
Debiasing Federated Learning with Correlated Client Participation
Zhenyu Sun
Ziyang Zhang
Zheng Xu
Gauri Joshi
Pranay Sharma
Ermin Wei
FedML
71
0
0
02 Oct 2024
Does Worst-Performing Agent Lead the Pack? Analyzing Agent Dynamics in Unified Distributed SGD
Jie Hu
Yi-Ting Ma
Do Young Eun
FedML
53
1
0
26 Sep 2024
Efficient Federated Learning against Heterogeneous and Non-stationary Client Unavailability
Ming Xiang
Stratis Ioannidis
Edmund Yeh
Carlee Joe-Wong
Lili Su
FedML
73
5
0
26 Sep 2024
FedAR: Addressing Client Unavailability in Federated Learning with Local Update Approximation and Rectification
Chutian Jiang
Hansong Zhou
Xiaonan Zhang
Shayok Chakraborty
FedML
101
1
0
26 Jul 2024
Federated Learning and AI Regulation in the European Union: Who is Responsible? -- An Interdisciplinary Analysis
Herbert Woisetschläger
Simon Mertel
Christoph Krönke
R. Mayer
Hans-Arno Jacobsen
FedML
57
2
0
11 Jul 2024
DRACO: Decentralized Asynchronous Federated Learning over Row-Stochastic Wireless Networks
Eunjeong Jeong
Marios Kountouris
80
1
0
19 Jun 2024
Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks
R. Saha
Mohamed Seif
M. Yemini
Andrea J. Goldsmith
H. Vincent Poor
FedML
55
2
0
06 Jun 2024
FedStale: leveraging stale client updates in federated learning
Angelo Rodio
Giovanni Neglia
FedML
58
5
0
07 May 2024
Understanding Server-Assisted Federated Learning in the Presence of Incomplete Client Participation
Haibo Yang
Pei-Yuan Qiu
Prashant Khanduri
Minghong Fang
Jia Liu
FedML
51
2
0
04 May 2024
Empowering Federated Learning with Implicit Gossiping: Mitigating Connection Unreliability Amidst Unknown and Arbitrary Dynamics
Ming Xiang
Stratis Ioannidis
Edmund Yeh
Carlee Joe-Wong
Lili Su
FedML
46
2
0
15 Apr 2024
Adaptive Federated Learning in Heterogeneous Wireless Networks with Independent Sampling
Jiaxiang Geng
Yanzhao Hou
Xiaofeng Tao
Juncheng Wang
Bing Luo
FedML
50
0
0
15 Feb 2024
How to Collaborate: Towards Maximizing the Generalization Performance in Cross-Silo Federated Learning
Yuchang Sun
Marios Kountouris
Jun Zhang
FedML
61
2
0
24 Jan 2024
Federated Learning with Instance-Dependent Noisy Label
Lei Wang
Jieming Bian
Jie Xu
FedML
76
10
0
16 Dec 2023
Distributed Personalized Empirical Risk Minimization
Yuyang Deng
Mohammad Mahdi Kamani
Pouria Mahdavinia
M. Mahdavi
45
5
0
26 Oct 2023
Every Parameter Matters: Ensuring the Convergence of Federated Learning with Dynamic Heterogeneous Models Reduction
Hanhan Zhou
Tian-Shing Lan
Guru Venkataramani
Wenbo Ding
70
29
0
12 Oct 2023
MimiC: Combating Client Dropouts in Federated Learning by Mimicking Central Updates
Yuchang Sun
Yuyi Mao
Jinchao Zhang
FedML
50
11
0
21 Jun 2023
A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging
Shiqiang Wang
Mingyue Ji
FedML
55
0
0
06 Jun 2023
Towards Bias Correction of FedAvg over Nonuniform and Time-Varying Communications
Ming Xiang
Stratis Ioannidis
E. Yeh
Carlee Joe-Wong
Lili Su
FedML
37
4
0
01 Jun 2023
Federated Learning in the Presence of Adversarial Client Unavailability
Lili Su
Ming Xiang
Jiaming Xu
Pengkun Yang
FedML
AAML
38
2
0
31 May 2023
Accelerating Hybrid Federated Learning Convergence under Partial Participation
Jieming Bian
Lei Wang
Kun Yang
Cong Shen
Jie Xu
FedML
77
13
0
10 Apr 2023
Delay Sensitive Hierarchical Federated Learning with Stochastic Local Updates
Abdulmoneam Ali
A. Arafa
FedML
70
4
0
09 Feb 2023
Federated Learning with Regularized Client Participation
Grigory Malinovsky
Samuel Horváth
Konstantin Burlachenko
Peter Richtárik
FedML
46
14
0
07 Feb 2023
On the Convergence of Federated Averaging with Cyclic Client Participation
Yae Jee Cho
Pranay Sharma
Gauri Joshi
Zheng Xu
Satyen Kale
Tong Zhang
FedML
73
31
0
06 Feb 2023
DELTA: Diverse Client Sampling for Fasting Federated Learning
Lung-Chuang Wang
Yongxin Guo
Tao R. Lin
Xiaoying Tang
FedML
76
25
0
27 May 2022
Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and Beyond
Chulhee Yun
Shashank Rajput
S. Sra
FedML
35
41
0
20 Oct 2021
Anarchic Federated Learning
Haibo Yang
Xin Zhang
Prashant Khanduri
Jia Liu
FedML
34
58
0
23 Aug 2021
Fast Federated Learning in the Presence of Arbitrary Device Unavailability
Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
FedML
47
101
0
08 Jun 2021
Clustered Sampling: Low-Variance and Improved Representativity for Clients Selection in Federated Learning
Yann Fraboni
Richard Vidal
Laetitia Kameni
Marco Lorenzi
FedML
48
192
0
12 May 2021
Achieving Linear Speedup with Partial Worker Participation in Non-IID Federated Learning
Haibo Yang
Minghong Fang
Jia Liu
FedML
58
258
0
27 Jan 2021
Local SGD: Unified Theory and New Efficient Methods
Eduard A. Gorbunov
Filip Hanzely
Peter Richtárik
FedML
69
111
0
03 Nov 2020
Optimal Client Sampling for Federated Learning
Jiajun He
Samuel Horváth
Peter Richtárik
FedML
73
200
0
26 Oct 2020
Random Reshuffling: Simple Analysis with Vast Improvements
Konstantin Mishchenko
Ahmed Khaled
Peter Richtárik
62
132
0
10 Jun 2020
Minibatch vs Local SGD for Heterogeneous Distributed Learning
Blake E. Woodworth
Kumar Kshitij Patel
Nathan Srebro
FedML
96
202
0
08 Jun 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
131
1,431
0
29 Feb 2020
Is Local SGD Better than Minibatch SGD?
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
60
254
0
18 Feb 2020
Distributed Optimization over Block-Cyclic Data
Yucheng Ding
Chaoyue Niu
Yikai Yan
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Rongfei Jia
FedML
88
16
0
18 Feb 2020
Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability
Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Zhihua Wu
FedML
138
38
0
18 Feb 2020
Advances and Open Problems in Federated Learning
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
...
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
181
6,229
0
10 Dec 2019
Lower Bounds for Non-Convex Stochastic Optimization
Yossi Arjevani
Y. Carmon
John C. Duchi
Dylan J. Foster
Nathan Srebro
Blake E. Woodworth
69
357
0
05 Dec 2019
Local SGD with Periodic Averaging: Tighter Analysis and Adaptive Synchronization
Farzin Haddadpour
Mohammad Mahdi Kamani
M. Mahdavi
V. Cadambe
FedML
64
201
0
30 Oct 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
107
4,496
0
21 Aug 2019
Lookahead Optimizer: k steps forward, 1 step back
Michael Ruogu Zhang
James Lucas
Geoffrey E. Hinton
Jimmy Ba
ODL
116
728
0
19 Jul 2019
1
2
Next