ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.12502
  4. Cited By
The Dialog Must Go On: Improving Visual Dialog via Generative
  Self-Training
v1v2 (latest)

The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training

25 May 2022
Gi-Cheon Kang
Sungdong Kim
Jin-Hwa Kim
Donghyun Kwak
Byoung-Tak Zhang
ArXiv (abs)PDFHTMLGithub (20★)

Papers citing "The Dialog Must Go On: Improving Visual Dialog via Generative Self-Training"

4 / 4 papers shown
Title
From Text to Multimodal: A Comprehensive Survey of Adversarial Example
  Generation in Question Answering Systems
From Text to Multimodal: A Comprehensive Survey of Adversarial Example Generation in Question Answering Systems
Gulsum Yigit
M. Amasyalı
AAML
64
0
0
26 Dec 2023
InfoVisDial: An Informative Visual Dialogue Dataset by Bridging Large
  Multimodal and Language Models
InfoVisDial: An Informative Visual Dialogue Dataset by Bridging Large Multimodal and Language Models
Bingbing Wen
Zhengyuan Yang
Jianfeng Wang
Zhe Gan
Bill Howe
Lijuan Wang
MLLM
64
1
0
21 Dec 2023
$\mathbb{VD}$-$\mathbb{GR}$: Boosting $\mathbb{V}$isual
  $\mathbb{D}$ialog with Cascaded Spatial-Temporal Multi-Modal
  $\mathbb{GR}$aphs
VD\mathbb{VD}VD-GR\mathbb{GR}GR: Boosting V\mathbb{V}Visual D\mathbb{D}Dialog with Cascaded Spatial-Temporal Multi-Modal GR\mathbb{GR}GRaphs
Adnen Abdessaied
Lei Shi
Andreas Bulling
3DH
58
4
0
25 Oct 2023
PROGrasp: Pragmatic Human-Robot Communication for Object Grasping
PROGrasp: Pragmatic Human-Robot Communication for Object Grasping
Gi-Cheon Kang
Junghyun Kim
Jaein Kim
Byoung-Tak Zhang
105
5
0
14 Sep 2023
1