ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.12422
  4. Cited By
Non-Programmers Can Label Programs Indirectly via Active Examples: A
  Case Study with Text-to-SQL

Non-Programmers Can Label Programs Indirectly via Active Examples: A Case Study with Text-to-SQL

25 May 2022
Ruiqi Zhong
Charles Burton Snell
Dan Klein
Jason Eisner
ArXivPDFHTML

Papers citing "Non-Programmers Can Label Programs Indirectly via Active Examples: A Case Study with Text-to-SQL"

32 / 32 papers shown
Title
LLM-Rubric: A Multidimensional, Calibrated Approach to Automated Evaluation of Natural Language Texts
Helia Hashemi
J. Eisner
Corby Rosset
Benjamin Van Durme
Chris Kedzie
100
3
0
03 Jan 2025
Toolformer: Language Models Can Teach Themselves to Use Tools
Toolformer: Language Models Can Teach Themselves to Use Tools
Timo Schick
Jane Dwivedi-Yu
Roberto Dessì
Roberta Raileanu
Maria Lomeli
Luke Zettlemoyer
Nicola Cancedda
Thomas Scialom
SyDa
RALM
129
1,710
0
09 Feb 2023
Constitutional AI: Harmlessness from AI Feedback
Constitutional AI: Harmlessness from AI Feedback
Yuntao Bai
Saurav Kadavath
Sandipan Kundu
Amanda Askell
John Kernion
...
Dario Amodei
Nicholas Joseph
Sam McCandlish
Tom B. Brown
Jared Kaplan
SyDa
MoMe
168
1,603
0
15 Dec 2022
Interactive Code Generation via Test-Driven User-Intent Formalization
Interactive Code Generation via Test-Driven User-Intent Formalization
Shuvendu K. Lahiri
Sarah Fakhoury
Aaditya Naik
Georgios Sakkas
Saikat Chakraborty
...
Piali Choudhury
Curtis von Veh
J. Inala
Chenglong Wang
Jianfeng Gao
58
63
0
11 Aug 2022
Language Models Can Teach Themselves to Program Better
Language Models Can Teach Themselves to Program Better
Patrick M. Haluptzok
Matthew Bowers
Adam Tauman Kalai
ReLM
SyDa
LRM
35
82
0
29 Jul 2022
CodeT: Code Generation with Generated Tests
CodeT: Code Generation with Generated Tests
Bei Chen
Fengji Zhang
A. Nguyen
Daoguang Zan
Zeqi Lin
Jian-Guang Lou
Weizhu Chen
70
333
0
21 Jul 2022
Self-Consistency Improves Chain of Thought Reasoning in Language Models
Self-Consistency Improves Chain of Thought Reasoning in Language Models
Xuezhi Wang
Jason W. Wei
Dale Schuurmans
Quoc Le
Ed H. Chi
Sharan Narang
Aakanksha Chowdhery
Denny Zhou
ReLM
BDL
LRM
AI4CE
497
3,589
0
21 Mar 2022
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
754
12,835
0
04 Mar 2022
Describing Differences between Text Distributions with Natural Language
Describing Differences between Text Distributions with Natural Language
Ruiqi Zhong
Charles Burton Snell
Dan Klein
Jacob Steinhardt
VLM
156
44
0
28 Jan 2022
A General Language Assistant as a Laboratory for Alignment
A General Language Assistant as a Laboratory for Alignment
Amanda Askell
Yuntao Bai
Anna Chen
Dawn Drain
Deep Ganguli
...
Tom B. Brown
Jack Clark
Sam McCandlish
C. Olah
Jared Kaplan
ALM
114
773
0
01 Dec 2021
Towards Transparent Interactive Semantic Parsing via Step-by-Step
  Correction
Towards Transparent Interactive Semantic Parsing via Step-by-Step Correction
Lingbo Mo
A. Lewis
Huan Sun
Michael White
KELM
53
14
0
15 Oct 2021
Recursively Summarizing Books with Human Feedback
Recursively Summarizing Books with Human Feedback
Jeff Wu
Long Ouyang
Daniel M. Ziegler
Nissan Stiennon
Ryan J. Lowe
Jan Leike
Paul Christiano
ALM
137
302
0
22 Sep 2021
PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding
  from Language Models
PICARD: Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models
Torsten Scholak
Nathan Schucher
Dzmitry Bahdanau
186
387
0
10 Sep 2021
Evaluating Large Language Models Trained on Code
Evaluating Large Language Models Trained on Code
Mark Chen
Jerry Tworek
Heewoo Jun
Qiming Yuan
Henrique Pondé
...
Bob McGrew
Dario Amodei
Sam McCandlish
Ilya Sutskever
Wojciech Zaremba
ELM
ALM
201
5,454
0
07 Jul 2021
Mind Your Outliers! Investigating the Negative Impact of Outliers on
  Active Learning for Visual Question Answering
Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering
Siddharth Karamcheti
Ranjay Krishna
Li Fei-Fei
Christopher D. Manning
62
92
0
06 Jul 2021
Evaluating Entity Disambiguation and the Role of Popularity in
  Retrieval-Based NLP
Evaluating Entity Disambiguation and the Role of Popularity in Retrieval-Based NLP
Anthony Chen
Pallavi Gudipati
Shayne Longpre
Xiao Ling
Sameer Singh
44
40
0
12 Jun 2021
Constrained Language Models Yield Few-Shot Semantic Parsers
Constrained Language Models Yield Few-Shot Semantic Parsers
Richard Shin
C. H. Lin
Sam Thomson
Charles C. Chen
Subhro Roy
Emmanouil Antonios Platanios
Adam Pauls
Dan Klein
J. Eisner
Benjamin Van Durme
351
205
0
18 Apr 2021
Surface Form Competition: Why the Highest Probability Answer Isn't
  Always Right
Surface Form Competition: Why the Highest Probability Answer Isn't Always Right
Ari Holtzman
Peter West
Vered Schwartz
Yejin Choi
Luke Zettlemoyer
LRM
92
236
0
16 Apr 2021
Falx: Synthesis-Powered Visualization Authoring
Falx: Synthesis-Powered Visualization Authoring
Chenglong Wang
Yu Feng
Rastislav Bodík
Işıl Dillig
Alvin Cheung
Amy J. Ko
129
48
0
01 Feb 2021
DuoRAT: Towards Simpler Text-to-SQL Models
DuoRAT: Towards Simpler Text-to-SQL Models
Torsten Scholak
Raymond Li
Dzmitry Bahdanau
H. D. Vries
C. Pal
AI4TS
61
27
0
21 Oct 2020
Semantic Evaluation for Text-to-SQL with Distilled Test Suites
Semantic Evaluation for Text-to-SQL with Distilled Test Suites
Ruiqi Zhong
Tao Yu
Dan Klein
60
131
0
06 Oct 2020
Task-Oriented Dialogue as Dataflow Synthesis
Task-Oriented Dialogue as Dataflow Synthesis
Semantic Machines
Jacob Andreas
J. Bufe
David Burkett
Charles C. Chen
...
Izabela Witoszko
Jason Wolfe
A. Wray
Yuchen Zhang
Alexander Zotov
AIFin
210
158
0
24 Sep 2020
Speak to your Parser: Interactive Text-to-SQL with Natural Language
  Feedback
Speak to your Parser: Interactive Text-to-SQL with Natural Language Feedback
Ahmed Elgohary
Saghar Hosseini
Ahmed Hassan Awadallah
64
67
0
05 May 2020
An Imitation Game for Learning Semantic Parsers from User Interaction
An Imitation Game for Learning Semantic Parsers from User Interaction
Ziyu Yao
Yiqi Tang
Wen-tau Yih
Huan Sun
Yu-Chuan Su
57
35
0
02 May 2020
Benchmarking Multimodal Regex Synthesis with Complex Structures
Benchmarking Multimodal Regex Synthesis with Complex Structures
Xi Ye
Qiaochu Chen
Işıl Dillig
Greg Durrett
57
17
0
02 May 2020
TF-Coder: Program Synthesis for Tensor Manipulations
TF-Coder: Program Synthesis for Tensor Manipulations
Kensen Shi
David Bieber
Rishabh Singh
92
42
0
19 Mar 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
522
4,773
0
23 Jan 2020
RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL
  Parsers
RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers
Bailin Wang
Richard Shin
Xiaodong Liu
Oleksandr Polozov
Matthew Richardson
75
588
0
10 Nov 2019
Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain
  Semantic Parsing and Text-to-SQL Task
Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task
Tao Yu
Rui Zhang
Kai-Chou Yang
Michihiro Yasunaga
Dongxu Wang
...
Irene Li
Qingning Yao
Shanelle Roman
Zilin Zhang
Dragomir R. Radev
RALM
83
1,222
0
24 Sep 2018
Inferring Logical Forms From Denotations
Inferring Logical Forms From Denotations
Panupong Pasupat
Percy Liang
69
58
0
22 Jun 2016
Concrete Problems in AI Safety
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
181
2,378
0
21 Jun 2016
How To Grade a Test Without Knowing the Answers --- A Bayesian Graphical
  Model for Adaptive Crowdsourcing and Aptitude Testing
How To Grade a Test Without Knowing the Answers --- A Bayesian Graphical Model for Adaptive Crowdsourcing and Aptitude Testing
Yoram Bachrach
T. Graepel
T. Minka
J. Guiver
106
210
0
27 Jun 2012
1