ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2205.11921
  4. Cited By
Compression-aware Training of Neural Networks using Frank-Wolfe

Compression-aware Training of Neural Networks using Frank-Wolfe

24 May 2022
Max Zimmer
Christoph Spiegel
S. Pokutta
ArXivPDFHTML

Papers citing "Compression-aware Training of Neural Networks using Frank-Wolfe"

11 / 11 papers shown
Title
Implicit Bias in Matrix Factorization and its Explicit Realization in a New Architecture
Yikun Hou
Suvrit Sra
A. Yurtsever
29
0
0
28 Jan 2025
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs
Max Zimmer
Megi Andoni
Christoph Spiegel
S. Pokutta
VLM
52
10
0
23 Dec 2023
ELSA: Partial Weight Freezing for Overhead-Free Sparse Network
  Deployment
ELSA: Partial Weight Freezing for Overhead-Free Sparse Network Deployment
Paniz Halvachi
Alexandra Peste
Dan Alistarh
Christoph H. Lampert
20
0
0
11 Dec 2023
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging
Sparse Model Soups: A Recipe for Improved Pruning via Model Averaging
Max Zimmer
Christoph Spiegel
S. Pokutta
MoMe
41
14
0
29 Jun 2023
Low Rank Optimization for Efficient Deep Learning: Making A Balance
  between Compact Architecture and Fast Training
Low Rank Optimization for Efficient Deep Learning: Making A Balance between Compact Architecture and Fast Training
Xinwei Ou
Zhangxin Chen
Ce Zhu
Yipeng Liu
21
2
0
22 Mar 2023
CrAM: A Compression-Aware Minimizer
CrAM: A Compression-Aware Minimizer
Alexandra Peste
Adrian Vladu
Eldar Kurtic
Christoph H. Lampert
Dan Alistarh
24
8
0
28 Jul 2022
Renormalized Sparse Neural Network Pruning
Renormalized Sparse Neural Network Pruning
Michael Rawson
4
0
0
21 Jun 2022
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
188
1,027
0
06 Mar 2020
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Comparing Rewinding and Fine-tuning in Neural Network Pruning
Alex Renda
Jonathan Frankle
Michael Carbin
224
383
0
05 Mar 2020
ImageNet Large Scale Visual Recognition Challenge
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
296
39,198
0
01 Sep 2014
1